精英家教網 > 高中數學 > 題目詳情

【題目】如圖,A、B、C為⊙O上三點,B為 的中點,P為AC延長線上一點,PQ與⊙O相切于點Q,BQ與AC相交于點D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

【答案】證明:(Ⅰ)連接CQ,BC,AB,
因為PQ是圓O的切線,所以∠PQC=∠CBD,
因為B為 的中點,所以∠CQB=∠ACB,
所以∠PQC+∠CQB=∠CBD+∠ACB,
即∠PQD=∠CDQ,
故△DPQ為等腰三角形.
(Ⅱ)解:設CD=t,則PD=PQ=1+t,PA=2+2t,
由PQ2=PCPA得t=1,
所以CD=1,AD=PD=2,
所以BDQD=CDAD=2.

【解析】(Ⅰ)連接CQ,BC,AB,證明∠PQD=∠CDQ,即可證明PD=PQ;(Ⅱ)利用切割線定理,求出CD=1,AD=PD=2,即可求BDQD.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某研究型學習小組調查研究高中生使用智能手機對學習的影響,部分統(tǒng)計數據如下:

使用智能手機

不使用智能手機

合計

學習成績優(yōu)秀

學習成績不優(yōu)秀

合計

(1)根據以上統(tǒng)計數據,你是否有的把握認為使用智能手機對學習有影響?

(2)為進一步了解學生對智能手機的使用習慣,現從全校使用智能手機的高中生中(人數很多)隨機抽取 人,求抽取的學生中學習成績優(yōu)秀的與不優(yōu)秀的都有的概率.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是(

A.i<3
B.i<4
C.i<5
D.i<6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現:“平面內到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系中,.設點的軌跡為,下列結論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點,使得

C. 三點不共線時,射線的平分線

D. 上存在點,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學的發(fā)展推動著科技的進步,正是基于線性代數、群論等數學知識的極化碼原理的應用,華為的5G技術領先世界.目前某區(qū)域市場中5G智能終端產品的制造由H公司及G公司提供技術支持據市場調研預測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術的智能終端產品分別占比假設兩家公司的技術更新周期一致,且隨著技術優(yōu)勢的體現每次技術更新后,上一周期采用G公司技術的產品中有20%轉而采用H公司技術,采用H公司技術的僅有5%轉而采用G公司技術設第n次技術更新后,該區(qū)域市場中采用H公司與G公司技術的智能終端產品占比分別為,不考慮其它因素的影響.

(1)用表示,并求實數使是等比數列;

(2)經過若干次技術更新后該區(qū)域市場采用H公司技術的智能終端產品占比能否達到75%以上?若能,至少需要經過幾次技術更新;若不能,說明理由?(參考數據:)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于,的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面

(II)若, 三棱錐的體積為,求該三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據莖葉圖能得到的正確結論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面四邊形ACBD(圖①)中,△ABC與△ABD均為直角三角形且有公共斜邊AB,設AB=2,∠BAD=30°,∠BAC=45°,將△ABC沿AB折起,構成如圖②所示的三棱錐C′﹣ABC,且使
(Ⅰ)求證:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.

查看答案和解析>>

同步練習冊答案