【題目】某研究型學(xué)習(xí)小組調(diào)查研究高中生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下:
使用智能手機(jī) | 不使用智能手機(jī) | 合計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | |||
學(xué)習(xí)成績(jī)不優(yōu)秀 | |||
合計(jì) |
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù),你是否有的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響?
(2)為進(jìn)一步了解學(xué)生對(duì)智能手機(jī)的使用習(xí)慣,現(xiàn)從全校使用智能手機(jī)的高中生中(人數(shù)很多)隨機(jī)抽取 人,求抽取的學(xué)生中學(xué)習(xí)成績(jī)優(yōu)秀的與不優(yōu)秀的都有的概率.
附:
【答案】(1)有的把握認(rèn)為二者有關(guān);(2).
【解析】分析:(1)利用公式求得,與臨界值比較即可得結(jié)果;(2)由古典概型概率公式可得抽到優(yōu)秀學(xué)生的概率為,利用獨(dú)立事件概率公式以及對(duì)立事件概率公式,可得抽取的學(xué)生中學(xué)習(xí)成績(jī)優(yōu)秀的與不優(yōu)秀的都有的概率.
詳解:(1),
所以有的把握認(rèn)為二者有關(guān);
(2)抽到優(yōu)秀學(xué)生的概率為,
抽到不優(yōu)秀學(xué)生的概率為,
人全為優(yōu)秀學(xué)生的概率為,
人全為不優(yōu)秀學(xué)生的概率為,
所以,抽到學(xué)生中既有優(yōu)秀又有不優(yōu)秀學(xué)生的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若= .
(1)求角A;
(2)若f(x)=sinx+cos(x+A),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線,為坐標(biāo)原點(diǎn),離心率,點(diǎn)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線與雙曲線交于、兩點(diǎn),且.求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,F(xiàn)從符合條件的志愿者中 隨機(jī)抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第,,組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組志愿者有被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)A(﹣1,0),其傾斜角是α,以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直線l和曲線C有公共點(diǎn),求傾斜角α的取值范圍;
(Ⅱ)設(shè)B(x,y)為曲線C任意一點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程:(為參數(shù)),曲線的參數(shù)方程:(為參數(shù)),且直線交曲線于,兩點(diǎn).
(Ⅰ)將曲線的參數(shù)方程化為普通方程,并求時(shí),的長(zhǎng)度;
(Ⅱ) 已知點(diǎn):,求當(dāng)直線傾斜角變化時(shí),的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右頂點(diǎn)A(2,0),且過點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點(diǎn),直線AE,AF分別交直線x=3于M,N兩點(diǎn),線段MN的中點(diǎn)為P,記直線PB的斜率為k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C為⊙O上三點(diǎn),B為 的中點(diǎn),P為AC延長(zhǎng)線上一點(diǎn),PQ與⊙O相切于點(diǎn)Q,BQ與AC相交于點(diǎn)D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com