(本小題滿分14分)已知是互不相等的實(shí)數(shù),
求證:由確定的三條拋物線至少有一條與軸有兩個(gè)不同的交點(diǎn).
見解析.

至少有一條與軸有兩個(gè)不同的交點(diǎn),情況比較多,用正難則反原則,假設(shè)題設(shè)中的函數(shù)確定的三條拋物線都不與軸有兩個(gè)不同的交點(diǎn),解之。
證明:假設(shè)題設(shè)中的函數(shù)確定的三條拋物線都不與軸有兩個(gè)不同的交點(diǎn),即任何一條拋物線與軸沒有兩個(gè)不同的交點(diǎn)┈┈┈┈┈┈┈┈┈┈┈┈2分
                   ┈┈┈┈┈┈┈┈┈┈┈┈3分
相加得   ┈┈┈┈┈┈┈┈┈┈┈┈2分
            ┈┈┈┈┈┈┈┈┈┈┈┈4分
與題設(shè)互不相等矛盾.      ┈┈┈┈┈┈┈┈┈┈┈2分
因此假設(shè)不成立,從而命題的證.         ┈┈┈┈┈┈┈┈┈┈┈┈1分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖6所示,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.

圖6
(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q,證明以PQ為直徑的圓恒過y軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

為中點(diǎn)的拋物線的弦所在直線方程為:                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過拋物線的所有焦點(diǎn)弦中,弦長(zhǎng)的最小值為(   )
A.pB.2pC.4pD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點(diǎn)的直線交該拋物線于兩點(diǎn),若,則=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若圓過點(diǎn)且與直線相切,設(shè)圓心的軌跡為曲線、為曲線上的兩點(diǎn),點(diǎn),且滿足.
(1)求曲線的方程;
(2)若,直線的斜率為,過兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程;
(3)分別過、作曲線的切線,兩條切線交于點(diǎn),若點(diǎn)恰好在直線上,求證:均為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)坐標(biāo)原點(diǎn)是O,拋物線與過焦點(diǎn)的直線l交于A、B兩點(diǎn),則等于(     ).
A.         B.         C. 3       D. -2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,線段AB過x軸正半軸上一定點(diǎn)M(m,0),端點(diǎn)A、B到x軸的距離之積為2m,以x軸為對(duì)稱軸,過A、O、B三點(diǎn)作拋物線,求該拋物線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案