【題目】某公司近年來(lái)特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬(wàn)元)對(duì)年創(chuàng)新產(chǎn)品銷(xiāo)售額(單位:十萬(wàn)元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷(xiāo)售額,10)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,,

現(xiàn)擬定關(guān)于的回歸方程為

(1)求,的值(結(jié)果精確到0.1);

(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為13萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷(xiāo)售額是多少?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

【答案】(1);(2)155萬(wàn)元.

【解析】分析:(1)令t=(x﹣3)2,求出,,求出相關(guān)系數(shù)的值即可;

(2)求出回歸方程,代入求值即可.

詳解:(1)令,則,

,,,,

(2)由(1)知,關(guān)于的回歸方程為,

當(dāng)時(shí), (十萬(wàn)元)萬(wàn)元,

故可預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為13萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷(xiāo)售額是155萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016121日至125日每天的晝夜溫差以及實(shí)驗(yàn)室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

日期

121

122

123

124

125

溫差x/

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.

(2)若選取的是121日和125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程.

(3)由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,據(jù)此說(shuō)明(2)中所得線(xiàn)性回歸方程是否可靠?并估計(jì)當(dāng)溫差為9 ℃時(shí),100顆種子中的發(fā)芽數(shù).

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,,,、分別是、上的點(diǎn),且,將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面

(Ⅱ)當(dāng)長(zhǎng)為多少時(shí),異面直線(xiàn)所成的角最小,并求出此時(shí)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:在正方體中,設(shè)直線(xiàn)與平面所成角為,二面角的大小為,則為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,某市為了制定合理的節(jié)水方案,對(duì)家庭用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100個(gè)家庭的月均用水量(單位:t),將數(shù)據(jù)按照,,,分成5組,制成了如圖所示的頻率分布直方圖.

1)求圖中a的值;

2)設(shè)該市有10萬(wàn)個(gè)家庭,估計(jì)全市月均用水量不低于的家庭數(shù);

3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)全市家庭月均用水量的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的兩根之和等于兩根之積的一半,則一定是( )

A. 直角三角形 B. 等腰三角形 C. 鈍角三角形 D. 等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的奇函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

1)求過(guò)點(diǎn)的圓的切線(xiàn)方程;

2)若直線(xiàn)過(guò)點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案