【題目】如圖1,在中,,,、分別是、上的點(diǎn),且,將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)長(zhǎng)為多少時(shí),異面直線,所成的角最小,并求出此時(shí)所成角的余弦值.

【答案】)詳見(jiàn)解析()當(dāng)時(shí),異面直線所成的角最小,此時(shí)所成角的余弦值為

【解析】

)根據(jù)線線垂直線面垂直()利用垂直關(guān)系寫(xiě)出函數(shù)關(guān)系,求函數(shù)的最小值,最后結(jié)合余弦函數(shù)的單調(diào)性可求得。

解:()證明:因?yàn)?/span>平面

平面,所以

平面;

(Ⅱ)如圖,連結(jié),并設(shè),,,

由(Ⅰ)中平面,所以有,從而在中,

,

又在中,,

顯然,當(dāng)時(shí),,

(或是中點(diǎn))時(shí),線段的長(zhǎng)度有最小值,最小值是.

又因?yàn)?/span>,且,則即為異面直線,所成的角,

又在中,.結(jié)合余弦函數(shù)在銳角范圍上是單調(diào)遞減函數(shù),所以當(dāng)取最大時(shí),取最小.

綜上,當(dāng)時(shí),異面直線,所成的角最小,此時(shí)所成角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù),滿足,為奇函數(shù),且,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于,兩點(diǎn),則二面角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的參數(shù)方程為為參數(shù),且).

(1)以曲線上的點(diǎn)與原點(diǎn)連線的斜率為參數(shù),寫(xiě)出曲線的參數(shù)方程;

(2)若曲線的兩個(gè)交點(diǎn)為,直線與直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“楊輝三角”又稱(chēng)“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開(kāi)方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書(shū)中,記錄了賈憲三角形數(shù)表,并稱(chēng)之為“開(kāi)方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知傾斜角為的直線經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫(xiě)出曲線的普通方程;

(2)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司近年來(lái)特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬(wàn)元)對(duì)年創(chuàng)新產(chǎn)品銷(xiāo)售額(單位:十萬(wàn)元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷(xiāo)售額,10)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,

現(xiàn)擬定關(guān)于的回歸方程為

(1)求,的值(結(jié)果精確到0.1);

(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為13萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷(xiāo)售額是多少?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,向量,,,

1)求函數(shù)的解析式,并求當(dāng)時(shí),的單調(diào)遞增區(qū)間;

(2)當(dāng),時(shí),的最大值為5,求的值;

(3)當(dāng)時(shí),若不等式,上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)考試中,小明的成績(jī)?cè)?/span>90~100分的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07,計(jì)算;

1)小明在數(shù)學(xué)考試中取得79分以上成績(jī)的概率;

2)小明考試及格的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案