【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù),且).
(1)以曲線上的點與原點連線的斜率為參數(shù),寫出曲線的參數(shù)方程;
(2)若曲線與的兩個交點為,直線與直線的斜率之積為,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某學校研究性學習小組調(diào)查學生使用智能手機對學習成績的影響,部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習成績有影響?
(Ⅱ)從學習成績優(yōu)秀的12名同學中,隨機抽取2名同學,求抽到不使用智能手機的人數(shù)的分布列及數(shù)學期望.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2)
根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差具有線性相關(guān)關(guān)系。
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)。
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過拋物線的焦點且與此拋物線交于,兩點,,直線與拋物線交于,兩點,且,兩點在軸的兩側(cè).
(1)證明:為定值;
(2)求直線的斜率的取值范圍;
(3)若(為坐標原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).
附:回歸方程中斜率和截距的最小二乘法估計公式分別為: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在定義域上不單調(diào),求的取值范圍;
(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,,、分別是、上的點,且,將沿折起到的位置,使,如圖2.
(Ⅰ)求證:平面;
(Ⅱ)當長為多少時,異面直線,所成的角最小,并求出此時所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一,某市為了制定合理的節(jié)水方案,對家庭用水情況進行了調(diào)查,通過抽樣,獲得了某年100個家庭的月均用水量(單位:t),將數(shù)據(jù)按照,,,,分成5組,制成了如圖所示的頻率分布直方圖.
(1)求圖中a的值;
(2)設(shè)該市有10萬個家庭,估計全市月均用水量不低于的家庭數(shù);
(3)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計全市家庭月均用水量的平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com