已知直線與平面所成的角為30°,為空間一定點,過作與所成的角都是45°的直線,則這樣的直線可作( )條 
A.2B.3 C.4D.無數(shù)
A
解:因為直線與平面所成的角為30°,為空間一定點,過作與所成的角都是45°的直線,則這樣的直線可作2條,選A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在三棱錐中,面,是正三角形, ,
(Ⅰ)求證:;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

(Ⅰ)求證:EF⊥平面PBC;
(Ⅱ)求二面角F-PC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正三棱錐P—ABC中,CM=2PM,CN=2NB,對于以下結(jié)論:

①二面角B—PA—C大小的取值范圍是(,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為;
③過點M與異面直線PA和BC都成的直線有3條;
④若二面角B—PA—C大小為,則過點N與平面PAC和平面PAB都成的直線有3條.
正確的序號是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,E、F分別是AA1和B1B的中點,則D1F與CE所成角的余弦值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、空間四邊形中,各邊及對角線長都相等,若分別為的中點,那么異面直線所成的角等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在長方體中,AB=BC=2,與面所成角的正弦值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,平面平面,,,中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四棱錐P—ABCD的所有側(cè)棱長都為,底面ABCD是邊長為2的正方形,則CD與PA所成角的余弦值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案