如圖,在三棱錐
中,平面
平面
,
,
,
,
為
中點.(Ⅰ)求點B到平面
的距離;(Ⅱ)求二面角
的余弦值.
(Ⅰ)
(Ⅱ)
第一問中利用因為
,
為
中點,所以
而平面
平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系得
,
,
,
,
,
,
故平面
的法向量
而
,故點B到平面
的距離
第二問中,由已知得平面
的法向量
,平面
的法向量
故二面角
的余弦值等于
解:(Ⅰ)因為
,
為
中點,所以
而平面
平面
,所以
平面
,
再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系,得
,
,
,
,
,
,故平面
的法向量
而
,故點B到平面
的距離
(Ⅱ)由已知得平面
的法向量
,平面
的法向量
故二面角
的余弦值等于
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
正方形ABCD所在平面與正方形ABEF所在平面成60°的二面角,則對角線AC與對角線BF對所成角的余弦值是__________. .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
與平面
所成的角為30°,
為空間一定點,過
作與
、
所成的角都是45°的直線
,則這樣的直線
可作( )條
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知平行四邊形
和矩形
所在的平面互相垂直,
,
是線段
的中點.
(Ⅰ)求二面角
的正弦值;
(Ⅱ)設(shè)點
為一動點,若點
從
出發(fā),沿棱按照
的路線運動到點
,求這一過程中形成的三棱錐
的體積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若兩個二面角的面分別垂直且它們的棱互相平行,則它們的角度之間的關(guān)系為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖所示,
是直三棱柱,
,點
、
分別是
,
的中點,若
,則
與
所成角的余弦值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
空間三條直線中,任何兩條不共面,且兩兩互相垂直,另一條直線
與這三條直線所成的角均為
,則
.
查看答案和解析>>