1.已知f(2x-3)=x2+x+1,求f(x)=$\frac{1}{4}{x^2}+2x+\frac{19}{4}$.

分析 利用換元法求解即可.

解答 解:f(2x-3)=x2+x+1,
設(shè)t=2x-3,則x=$\frac{1}{2}$(t+3),
那么:函數(shù)f(2x-3)=x2+x+1轉(zhuǎn)化為g(t)=$\frac{1}{4}(t+3)^{2}+\frac{1}{2}(t+3)+1$
整理得:g(t)=$\frac{1}{4}{t}^{2}+2t+\frac{19}{4}$,
故得f(x)=$\frac{1}{4}{x}^{2}+2x+\frac{19}{4}$,
故答案為:f(x)=$\frac{1}{4}{x}^{2}+2x+\frac{19}{4}$.

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|-1<x<3},B={x|x>1},則集合A∩B=( 。
A.{-1,3}B.{-1,1}C.(1,3)D.{-1,+∞}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,PM,切點(diǎn)為Q,M,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系;
(2)若以P為圓心的圓P與圓O有公共點(diǎn),試求圓P的半徑最小時(shí)圓P的方程;
(3)當(dāng)P點(diǎn)的位置發(fā)生變化時(shí),直線QM是否過定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$的單調(diào)減區(qū)間為( 。
A.[-2,+∞)B.(-∞,-2]C.(-∞,-6]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$f({log_3}x)={x^2}-2x+4$,$x∈[\frac{1}{3},3]$.
(1)求f(x)的解析式及定義域;
(2)求f(x)的值域;
(2)若方程f(x)=a2-3a+3有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,n∥α,則m∥nC.若m⊥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在正三棱柱ABC-A1B1C1中,AA1=6,異面直線BC1與AA1所成角的大小為30°,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求證:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)的對(duì)稱軸x=-2,f(x)的圖象被x軸截得的弦長(zhǎng)為2$\sqrt{3}$,且滿足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,對(duì)x∈[-1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案