【題目】當(dāng)今信息時(shí)代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對學(xué)習(xí)成績有影響,隨機(jī)抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,用莖葉圖表示如下圖:
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對學(xué)習(xí)成績有影響?
及格() | 不及格 | 合計(jì) | |
很少使用手機(jī) | |||
經(jīng)常使用手機(jī) | |||
合計(jì) |
(2)從50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)列題,甲、乙獨(dú)立解決此題的概率分別為, , ,若,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“師徒”,記為兩人中解決此題的人數(shù),若,問兩人是否適合結(jié)為“師徒”?
參考公式及數(shù)據(jù): ,其中.
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點(diǎn)M為AB1的中點(diǎn),點(diǎn)P為對角線AC1上的動(dòng)點(diǎn),點(diǎn)Q為底面ABCD上的動(dòng)點(diǎn)(點(diǎn)P、Q可以重合),則MP+PQ的最小值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為選拔選手參加“中國謎語大會(huì)”,某中學(xué)舉行了一次“謎語大賽”活動(dòng).為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照, , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(Ⅰ)求樣本容量和頻率分布直方圖中的, 的值;
(Ⅱ)分?jǐn)?shù)在的學(xué)生設(shè)為一等獎(jiǎng),獲獎(jiǎng)學(xué)金500元;分?jǐn)?shù)在的學(xué)生設(shè)為二等獎(jiǎng),獲獎(jiǎng)學(xué)金200元.已知在樣本中,獲一、二等獎(jiǎng)的學(xué)生中各有一名男生,則從剩下的女生中任取三人,求獎(jiǎng)學(xué)金之和大于600的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖)∠ABC=45°,AB= , AD=1,DC⊥BC,則這塊菜地的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G為BC的中點(diǎn).
(1)求證:FG平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在[0,+∞)上遞增,=0,已知g(x)=﹣f(|x|),滿足的x的取值范圍是( 。
A.(0,+∞)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,且橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com