已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間[0,2]上恒有,求的取值范圍.

 

【答案】

(1)是單調(diào)遞增區(qū)間, 是單調(diào)遞減區(qū)間.(2).

【解析】

試題分析:(1)本題較為簡(jiǎn)單,屬于常規(guī)題型,遵循“求導(dǎo)數(shù),解不等式,定單調(diào)區(qū)間”等步驟.

(2)由于在區(qū)間[0,2]上恒有,所以,只需確定的最小值,是此最小值不小于,建立的不等式,確定得到的范圍. 對(duì)的取值情況進(jìn)行分類(lèi)討論,確定函數(shù)的最小值,是解題的關(guān)鍵.

試題解析:(1)

,  4分

上都單調(diào)遞增,在上單調(diào)遞減;  6分

(2)為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),  8分

①當(dāng)時(shí),函數(shù)上的最小值為

,即,又

    11分

②當(dāng)時(shí),函數(shù)上的最小值為

,又,,    14分

綜上,.    15分.

考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、確定極值,不等式的解法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省荊州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的定義域;

(2)當(dāng)為何值時(shí),函數(shù)值大于1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣東省江門(mén)市開(kāi)平市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)由,,,這幾個(gè)函數(shù)值,你能發(fā)現(xiàn)f(x)與有什么關(guān)系?并證明你的結(jié)論;
(2)求的值;
(3)判斷函數(shù)在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教B版高中數(shù)學(xué)必修一2.2二次函數(shù)的性質(zhì)與圖象練習(xí)卷(二)(解析版) 題型:解答題

已知函數(shù)

  (1)、已知,求

  (2)、不計(jì)算函數(shù)值,比較的大小

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),

(1)若函數(shù)在[l,+∞]上是增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若=一的極值點(diǎn),求在[l,]上的最大值:

(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個(gè)交點(diǎn),若存在,求出實(shí)數(shù)b的取值范圍:若不存在,試說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案