【題目】已知橢圓:,、分別為橢圓長軸的左、右端點,為直線上異于點的任意一點,連接交橢圓于點.
(1)若,求直線的方程;
(2)是否存在軸上的定點使得以為直徑的圓恒過與的交點?如果存在,請求出定點的坐標;如果不存在,請說明理由.
【答案】(1)或;(2)存在,.
【解析】
(1)根據(jù),可得,利用坐標計算,可得點,代入橢圓方程,然后可得,最后可得直線的斜率并得方程.
(2)假設(shè)直線的方程,然后分別與,聯(lián)立,可得,然后假設(shè)點的坐標,根據(jù),可得結(jié)果.
解:(1)設(shè),.
,
, .
整理得 , 即.
代入橢圓方程解得:
,.
故直線的方程為或.
(2)方法一:
由題可知:直線的斜率存在
設(shè)直線的方程為,,
由得.
由得.
.
假設(shè)存在定點滿足要求,則.
,.
,整理得.
存在軸上的定點,使得以為直徑的圓恒過與的交點.
方法二:
假設(shè)存在定點滿足要求,設(shè),
則由以為直徑的圓通過與的交點得
①
設(shè) 整理得
,
,
,整理得 . ②
將②代入①,有,,解得.
存在軸上的定點,使得以為直徑的圓恒過與的交點
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個零點;④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對n個不同的實數(shù)a1,a2,…,an可得n!個不同的排列,每個排列為一行寫成一個n!行的數(shù)陣.對第i行ai1,ai2,…,ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3…,n!.例如用1,2,3可得數(shù)陣如圖,對于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于( )
A.-3600B.-1800C.-1080D.-720
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年1月底因新型冠狀病毒感染的肺炎疫情形勢嚴峻,避免外出是減少相互交叉感染最有效的方式.在家中適當鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查“宅”家居民的運動情況,從該小區(qū)隨機抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:
(1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)小張是該小區(qū)的一位居民,他記錄了自己“宅”家7天的鍛煉時長:
序號n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
鍛煉時長m(單位:分鐘) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;
(Ⅱ)若(是(1)中的平均值),則當天被稱為“有效運動日”.估計小張“宅”家第8天是否是“有效運動日”?
附;在線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線交拋物線于、兩點,以線段為直徑的圓交軸于、兩點,設(shè)線段的中點為,則( )
A.
B.若,則直線的斜率為
C.若拋物線上存在一點到焦點的距離等于,則拋物線的方程為
D.若點到拋物線準線的距離為,則的最小值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.
(1)一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格,
該傳染病的潛伏期受諸多因素影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表,請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān)
潛伏期≤6天 | 潛伏期>6天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
(2)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:下面的臨界值表僅供參考.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列的某一項,若存在,有成立,則稱具有性質(zhì).
(1)設(shè),若對任意的,都具有性質(zhì),求的最小值;
(2)設(shè)等差數(shù)列的首項,公差為,前項和為,若對任意的數(shù)列中的項都具有性質(zhì),求實數(shù)的取值范圍;
(3)設(shè)數(shù)列的首項,當時,存在滿足,且此數(shù)列中恰有一項不具有性質(zhì),求此數(shù)列的前項和的最大值和最小值以及取得最值時對應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,直線與相交于,兩點,當時,
(1)求橢圓的標準方程.
(2)在橢圓上是否存在點,使得當時,的平分線總是平行于軸?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c均為正數(shù),設(shè)函數(shù)f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函數(shù)f(x)的最大值為1,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com