【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

【答案】C
【解析】解:令f(a)=t,
則f(t)=2t ,
當(dāng)t<1時(shí),3t﹣1=2t
由g(t)=3t﹣1﹣2t的導(dǎo)數(shù)為g′(t)=3﹣2tln2,
在t<1時(shí),g′(t)>0,g(t)在(﹣∞,1)遞增,
即有g(shù)(t)<g(1)=0,
則方程3t﹣1=2t無(wú)解;
當(dāng)t≥1時(shí),2t=2t成立,
由f(a)≥1,即3a﹣1≥1,解得a≥ ,且a<1;
或a≥1,2a≥1解得a≥0,即為a≥1.
綜上可得a的范圍是a≥
故選C.
令f(a)=t,則f(t)=2t , 討論t<1,運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,進(jìn)而得到方程無(wú)解,討論t≥1時(shí),以及a<1,a≥1,由分段函數(shù)的解析式,解不等式即可得到所求范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,正確的有( ) ①兩個(gè)變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對(duì)x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數(shù)f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個(gè)
B.1 個(gè)
C.2 個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級(jí)

級(jí)優(yōu)

級(jí)良

級(jí)輕度污染

級(jí)中度污染

級(jí)重度污染

級(jí)嚴(yán)重污染

該社團(tuán)將該校區(qū)在天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率

請(qǐng)估算年(以天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);

)該校日將作為高考考場(chǎng),若這兩天中某天出現(xiàn)級(jí)重度污染,需要凈化空氣費(fèi)用元,出現(xiàn)級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用元,記這兩天凈化空氣總費(fèi)用為元,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2+ax﹣6a2≤0},B={x||x﹣2|<a},
(1)當(dāng)a=1時(shí),求A∩B和A∪B;
(2)當(dāng)BA時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 并且滿足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3;
(2)猜想{an}的通項(xiàng)公式,并加以證明;
(3)設(shè)x>0,y>0,且x+y=1,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的極值;
(3)若函數(shù)g(x)=f(x)+ 在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖由圖中數(shù)據(jù)可知身高在[120,130]內(nèi)的學(xué)生人數(shù)為( )

A.20
B.25
C.30
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)

(1)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并給出證明;

(2)首項(xiàng)為的數(shù)列滿足:①;②.其中.求證:對(duì)于任意的,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(x3﹣3x+2﹣c)+x(x≥﹣2),若不等式f(x)≥0恒成立,則實(shí)數(shù)c的最大值是

查看答案和解析>>

同步練習(xí)冊(cè)答案