【題目】已知函數(shù)在處有極值.
(1)求的解析式;
(2)若關于的不等式恒成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)由題意得出可得出關于、的方程組,解出這兩個量的值,進而可求得函數(shù)的解析式;
(2)構造函數(shù),由題意可知,不等式對任意的恒成立,求出導數(shù),對實數(shù)進行分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,求出其最大值,通過解不等式可求得實數(shù)的取值范圍.
(1),,
因為函數(shù)在處有極值,
得,,解得,,
所以;
(2)不等式恒成立,
即不等式恒成立,
令,
則不等式對任意的恒成立,則.
.
又函數(shù)的定義域為.
①當時,對任意的,,則函數(shù)在上單調(diào)遞增.
又,所以不等式不恒成立;
②當時,.
令,得,當時,;當時,.
因此,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
故函數(shù)的最大值為,由題意得需.
令,函數(shù)在上單調(diào)遞減,
又,由,得,,
因此,實數(shù)的取值范圍是;
科目:高中數(shù)學 來源: 題型:
【題目】(14分)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當a=1時,是否同時存在實數(shù)m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點?若存在,求出最小的實數(shù)m和最大的實數(shù)M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方中,,,E為的中點,以為折痕,把折起到的位置,且平面平面.
(1)求證:;
(2)在棱上是否存在一點P,使得平面,若存在,求出點P的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列事件A,B是獨立事件的是( )
A. 一枚硬幣擲兩次,A=“第一次為正面向上”,B=“第二次為反面向上”
B. 袋中有兩個白球和兩個黑球,不放回地摸兩球,A=“第一次摸到白球”,B=“第二次摸到白球”
C. 擲一枚骰子,A=“出現(xiàn)點數(shù)為奇數(shù)”,B=“出現(xiàn)點數(shù)為偶數(shù)”
D. A=“人能活到20歲”,B=“人能活到50歲”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》卷五《商功》中有如下敘述“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對稱型屋脊狀的幾何體,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長四丈,“上袤二丈”是指脊長二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈.現(xiàn)有一個芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com