【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如下:
B校樣本數(shù)據(jù)統(tǒng)計(jì)表:
成績(jī)(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(個(gè)) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績(jī)分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績(jī)之和大于或等于15的概率.
【答案】(1)A校樣本的平均成績(jī)?yōu)?/span>,A校樣本的方差為;B校樣本的平均成績(jī)?yōu)?/span>,B校樣本的方差為;A校學(xué)生的計(jì)算機(jī)成績(jī)比B校學(xué)生的成績(jī)更穩(wěn)定;(2)
【解析】
(1)分別求出兩校樣本數(shù)據(jù)的均值和方差、、、,由,可知兩校學(xué)生的計(jì)算機(jī)成績(jī)均值相同,比較方差可知,從而可知A校學(xué)生的成績(jī)更穩(wěn)定;
(2)計(jì)算可知A校成績(jī)?yōu)?/span>7分的學(xué)生應(yīng)抽取的人數(shù)為人,成績(jī)?yōu)?/span>8分的學(xué)生應(yīng)抽取的人數(shù)為人,成績(jī)?yōu)?/span>9分的學(xué)生應(yīng)抽取的人數(shù)為,進(jìn)而可得到所有基本事件的總個(gè)數(shù)及滿足條件的基本事件的個(gè)數(shù),再結(jié)合古典概型的概率公式,可求出答案.
(1)從A校樣本數(shù)據(jù)的條形圖可知:
成績(jī)?yōu)?/span>4分的學(xué)生有人,成績(jī)?yōu)?/span>5分的學(xué)生有人,
成績(jī)?yōu)?/span>6分的學(xué)生有人,成績(jī)?yōu)?/span>7分的學(xué)生有人,
成績(jī)?yōu)?/span>8分的學(xué)生有人,成績(jī)?yōu)?/span>9分的學(xué)生有人.
所以A校樣本的平均成績(jī)?yōu)?/span>,
A校樣本的方差為,
從B校樣本數(shù)據(jù)統(tǒng)計(jì)表可知:
B校樣本的平均成績(jī)?yōu)?/span>,
B校樣本的方差為.
因?yàn)?/span>,所以兩校學(xué)生的計(jì)算機(jī)成績(jī)平均分相同,又因?yàn)?/span>,所以A校學(xué)生的計(jì)算機(jī)成績(jī)比B校學(xué)生的成績(jī)更穩(wěn)定.
(2)依題意,A校成績(jī)?yōu)?/span>7分的學(xué)生應(yīng)抽取的人數(shù)為:人,設(shè)為;
成績(jī)?yōu)?/span>8分的學(xué)生應(yīng)抽取的人數(shù)為:,設(shè)為;
成績(jī)?yōu)?/span>9分的學(xué)生應(yīng)抽取的人數(shù)為:,設(shè)為.
所以所有基本事件有:,共15個(gè),
其中,滿足條件的基本事件有:,共9個(gè),
所以從抽取的6人中任選2人參加更高一級(jí)的比賽,這2人成績(jī)之和大于或等于15的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式.孿生素?cái)?shù)猜想是希爾伯特在二十世紀(jì)初提出的23個(gè)數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個(gè)素?cái)?shù),使得是素?cái)?shù),稱素?cái)?shù)對(duì)為孿生素?cái)?shù).在不超過15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,,,,分別為,上的一點(diǎn),且,,將矩形卷成以,為母線的圓柱的半個(gè)側(cè)面,且,分別為圓柱的上、下底面的直徑.
(1)求證:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
區(qū)間 | |||||
人數(shù) | 50 | 50 | a | 150 | b |
(1)上表是年齡的頻數(shù)分布表,求正整數(shù)的值;
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列對(duì)任意都有(其中、、是常數(shù)) .
(Ⅰ)當(dāng),,時(shí),求;
(Ⅱ)當(dāng),,時(shí),若,,求數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng),,時(shí),設(shè)是數(shù)列的前項(xiàng)和,,試問:是否存在這樣的“封閉數(shù)列”,使得對(duì)任意,都有,且.若存在,求數(shù)列的首項(xiàng)的所有取值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)為( )
①“都有”的否定是“使得”;
②“”是“”成立的充分條件;
③命題“若,則方程有實(shí)數(shù)根”的否命題;
④冪函數(shù)的圖像可以出現(xiàn)在第四象限.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】千百年來,我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)A的100天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣 日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | 25 | 5 |
未出現(xiàn) | 25 | 45 |
臨界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并計(jì)算得到,下列小波對(duì)地區(qū)A天氣判斷不正確的是( )
A.夜晚下雨的概率約為
B.未出現(xiàn)“日落云里走”夜晚下雨的概率約為
C.有的把握認(rèn)為“‘日落云里走’是否出現(xiàn)”與“當(dāng)晚是否下雨”有關(guān)
D.出現(xiàn)“日落云里走”,有的把握認(rèn)為夜晚會(huì)下雨
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com