【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
區(qū)間 | |||||
人數(shù) | 50 | 50 | a | 150 | b |
(1)上表是年齡的頻數(shù)分布表,求正整數(shù)的值;
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.
【答案】(1),;(2)第1,2,3組分別抽取1人,1人,4人;(3).
【解析】
(1)根據(jù)頻率分布直方圖得出和的頻率,即可得出正整數(shù)的值;
(2)利用分層抽樣的性質(zhì),即可得出年齡在第1,2,3組的人數(shù);
(3)利用列舉法得出6人中隨機(jī)抽取2人的所有情況,根據(jù)古典概型的概率公式求解即可.
解:(1)由題設(shè)可知,,.
(2)因?yàn)榈?/span>1,2,3組共有人,
利用分層抽樣在300名學(xué)生中抽取6名學(xué)生,每組抽取的人數(shù)分別為:
第1組的人數(shù)為,第2組的人數(shù)為,第3組的人數(shù)為,
所以第1,2,3組分別抽取1人,1人,4人.
(3)設(shè)第1組的1位同學(xué)為A,第2組的1位同學(xué)為B,第3組的4位同學(xué)為,則從6位同學(xué)中抽兩位同學(xué)有:
,
共15種可能.
其中2人年齡都不在第3組的有:共1種可能,
所以至少有1人年齡在第3組的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某傳染病疫情爆發(fā)期間,當(dāng)?shù)卣e極整合醫(yī)療資源,建立“艙醫(yī)院”對(duì)所有密切接觸者進(jìn)行14天的隔離觀察治療.治療期滿后若檢測指標(biāo)仍未達(dá)到合格標(biāo)準(zhǔn),則轉(zhuǎn)入指定專科醫(yī)院做進(jìn)一步的治療.“艙醫(yī)院”對(duì)所有人員在“入口”及“出口”時(shí)都進(jìn)行了醫(yī)學(xué)指標(biāo)檢測,若“入口”檢測指標(biāo)在35以下者則不需進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定?漆t(yī)院進(jìn)行治療.以下是20名進(jìn)入“艙醫(yī)院”的密切接觸者的“入口”及“出口”醫(yī)學(xué)檢測指標(biāo):
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1)
(Ⅱ)如果60是“艙醫(yī)院”的“出口”最低合格指標(biāo),那么,“入口”指標(biāo)低于多少時(shí),將來這些密切接觸者將不能進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定專科醫(yī)院接受治療.(檢測指標(biāo)為整數(shù))
附注:參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn)的直線交拋物線于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,.
(1)求拋物線的方程;
(2)已知點(diǎn),過點(diǎn)作直線交拋物線于、兩點(diǎn),求的最大值,并求取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶節(jié)期間,滕州市實(shí)驗(yàn)小學(xué)舉行了一次科普知識(shí)競賽活動(dòng),設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)及紀(jì)念獎(jiǎng),獲獎(jiǎng)人數(shù)的分配情況如圖所示,各個(gè)獎(jiǎng)品的單價(jià)分別為:一等獎(jiǎng)50元、二等獎(jiǎng)20元、三等獎(jiǎng)10元,四等獎(jiǎng)5元,紀(jì)念獎(jiǎng)2元,則以下說法中不正確的是( )
A.獲紀(jì)念獎(jiǎng)的人數(shù)最多B.各個(gè)獎(jiǎng)項(xiàng)中二等獎(jiǎng)的總費(fèi)用最高
C.購買獎(jiǎng)品的費(fèi)用平均數(shù)為6.65元D.購買獎(jiǎng)品的費(fèi)用中位數(shù)為5元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:
B校樣本數(shù)據(jù)統(tǒng)計(jì)表:
成績(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(個(gè)) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,橢圓的上、下頂點(diǎn)分別為,,左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,.原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)是橢圓上異于,的任一點(diǎn),直線,,分別交軸于點(diǎn),,若直線與過點(diǎn),的圓相切,切點(diǎn)為,證明:線段的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當(dāng)m=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,己知是橢圓的右焦點(diǎn),是橢圓上位于軸上方的任意一點(diǎn),過作垂直于的直線交其右準(zhǔn)線于點(diǎn).
(1)求橢圓的方程;
(2)若,求證:直線與橢圓相切;
(3)在橢圓上是否存在點(diǎn),使四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com