【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn .
【答案】
(1)
解:設{an}的公差為d,
則a10=a1+9d=19, ,
解得a1=1,d=2,所以an=2n﹣1,
所以b1b2b3…bn﹣1bn=2n+1…①
當n=1時,b1=3,
當n≥2時,b1b2b3…bn﹣1=2n﹣1…②
①②兩式相除得
因為當n=1時,b1=3適合上式,所以 .
(2)
解:由已知 ,
得
則Tn=c1+c2+c3+…+cn= ,
當n為偶數(shù)時,
=
= ,
當n為奇數(shù)時,
=
= .
綜上: .
【解析】(1)由題意和等差數(shù)列的前n項和公式求出公差,代入等差數(shù)列的通項公式化簡求出an , 再化簡b1b2b3…bn﹣1bn=an+2,可得當n≥2時b1b2b3…bn﹣1=2n﹣1,將兩個式子相除求出bn;(2)由(1)化簡cn=(﹣1)n ,再對n分奇數(shù)和偶數(shù)討論,分別利用裂項相消法求出Tn , 最后要用分段函數(shù)的形式表示出來.
【考點精析】本題主要考查了等差數(shù)列的前n項和公式和數(shù)列的前n項和的相關知識點,需要掌握前n項和公式:;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b= ,a= ﹣b .
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時4千米的速度向北航行,同時,乙船自B出發(fā)以每小時6千米的速度向北偏東60°的方向駛去.當甲船在A,B之間,且甲、乙兩船相距最近時,它們所航行的時間是( )
A. 分鐘 B. 小時 C. 21.5分鐘 D. 2.15分鐘
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形,已知幾何體A﹣BCED的體積為16.
(1)求實數(shù)a的值;
(2)將直角三角形△ABD繞斜邊AD旋轉一周,求該旋轉體的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱中, 底面,底面為菱形, 為與交點,已知,.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ∥平面;
(Ⅲ)設點在內(含邊界),且 ,說明滿足條件的點的軌跡,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標原點,過點的直線與拋物線分別相交于兩點(其中點在第四象限內).
(1)若,求直線的方程;
(2)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com