【題目】以下四個命題中是假命題的是

A. “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理.

B. “在平面中,對于三條不同的直線, ,若, ,將此結(jié)論放到空間中也成立” 此推理屬于合情推理.

C. ”是“函數(shù) 存在極值”的必要不充分條件.

D. ,則的最小值為.

【答案】D

【解析】易知“昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理,“在平面中,對于三條不同的直線 , ,若, ,將此結(jié)論放到空間中也成立” 此推理屬于合情推理中的類比推理,故選項(xiàng)A、B為真命題;因?yàn)?/span>存在極值有零點(diǎn),則,所以“”是“函數(shù)存在極值”的必要不充分條件,即選項(xiàng)C正確;若,則 ,但,故選項(xiàng)D錯誤;故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn), 的延長線交橢圓于點(diǎn),過點(diǎn)分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;

(2)當(dāng)時,若點(diǎn)平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形均為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),以為直徑的圓經(jīng)過點(diǎn), , 的中點(diǎn)為 的中點(diǎn)為,且

(Ⅰ)求證:平面平面

(Ⅱ)求幾何體的體積. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份

2006

2008

2010

2012

2014

需求量(萬噸)

236

246

257

276

286

(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程x+

(2)利用(1)中所求出的直線方程預(yù)測該地2018年的糧食需求量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題的必要而不充分條件;

設(shè)命題實(shí)數(shù)滿足方程表示雙曲線.

(1)若“”為真命題,求實(shí)數(shù)的取值范圍;

(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在

之外的零件數(shù),求;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

下面是檢驗(yàn)員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 ,其中為抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機(jī)變量服從正態(tài)分布,則

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān):

合計

認(rèn)可

不認(rèn)可

合計

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案