若 0<α<
,-
<β<0,cos(α+
)=
,cos(
-
)=
,求cos(2α+β)值.
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:由題意求得 sin(α+
)=
,sin(
-)=
.求得cos(α+
)=cos[(α+
)-(
-)]的值,從而求得cos(2α+β)=2
cos2(α+)-1的值.
解答:
解:由題意可得
<α+
<
,
<
-<
,
cos(α+
)=
,cos(
-
)=
,
∴sin(α+
)=
,sin(
-)=
.
∴cos(α+
)=cos[(α+
)-(
-)]=cos(α+
)cos(
-)+sin(α+
)sin(
-)
=
×+
×=
,
∴cos(2α+β)=2
cos2(α+)-1=
.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角函數(shù)、二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在四棱錐P-ABCD中,PD⊥平面ABCD,PD=CD=BC=2AD,AD∥BC,∠BCD=90°.
(Ⅰ)求證:BC⊥PC;
(Ⅱ)求PA與平面PBC所成角的正弦值;
(Ⅲ)線段PB上是否存在點(diǎn)E,使AE⊥平面PBC?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知p:x2-2x-3≤0,q:1-m≤x≤1+m(m>0).
(Ⅰ)當(dāng)m=1時(shí),p∧q為真命題,求x的取值范圍;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={x|log
2(8-2
x)≤2},B={x|
<0}求:
(1)(∁
RA)∪B;
(2)(∁
RA)∪(∁
RB).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知雙曲線與橢圓
+=1焦點(diǎn)相同,且其一條漸近線方程為
x-y=0,求該雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知橢圓C:
+y
2=1(a>0)的一個(gè)焦點(diǎn)為(
,0).
(1)求a的值.
(2)直線l經(jīng)過點(diǎn)P(
,
),且與橢圓C交于A、B兩點(diǎn),若點(diǎn)P恰為線段AB的中點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,OA⊥底面ABCD,OA=2,M為OA中點(diǎn).
(1)求證:直線BD⊥平面OAC;
(2)求直線MD與平面OAC所成角的大。
(3)求點(diǎn)A到平面OBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知直線x+2y-3=0與圓x2+y2+x-6y+m=0相交于P,Q兩點(diǎn),且OP⊥OQ(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知一次函數(shù)f(x)=ax+b,且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,則f(x)的解析式是
.
查看答案和解析>>