已知p:x2-2x-3≤0,q:1-m≤x≤1+m(m>0).
(Ⅰ)當(dāng)m=1時(shí),p∧q為真命題,求x的取值范圍;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷,復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:(Ⅰ)當(dāng)m=1時(shí),根據(jù)p∧q為真命題,利用復(fù)合命題之間的關(guān)系即可求x的取值范圍;
(Ⅱ)根據(jù)p是q的充分條件,即可求實(shí)數(shù)m的取值范圍.
解答: 解:(Ⅰ)當(dāng)m=1時(shí),q:0≤x≤2.
由x2-2x-3≤0得-3≤x≤3.
即p:-3≤x≤3,
若p∧q為真命題,
則p,q同時(shí)為真,即
-1≤x≤3
0≤x≤2
,
解得0≤x≤2.
即x的取值范圍是[0,2];
(Ⅱ)若p是q的充分條件,
1-m≤-1
1+m≥3
,
解得m≥2,
即實(shí)數(shù)m的取值范圍是m≥2.
點(diǎn)評(píng):本題主要考查復(fù)合命題之間的關(guān)系以及充分條件和必要條件的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和公式為Sn=n2-6n+3,則a7+a8+a9+a10等于(  )
A、7B、13C、33D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx+cosx,2),
b
=(1,sinxcosx),設(shè)f(x)=
a
b
,x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高二理科開(kāi)設(shè)語(yǔ)文、數(shù)學(xué)、外語(yǔ)、物理、化學(xué)、生物和體育七門課程,根據(jù)下列條件,課表分別有多少種不同排法?
(1)某天開(kāi)設(shè)七門不同課程,其中體育課不排在第一、七節(jié).
(2)某天開(kāi)設(shè)四門不同課程,其中體育課不排在第一、四節(jié).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD.E為SD的中點(diǎn),已知∠ABC=45°,AB=2,BC=2
2
,SB=SC=
3

(Ⅰ) 求證:SA⊥BC;
(Ⅱ) 在BC上求一點(diǎn)F,使EC∥平面SAF;
(Ⅲ) 求三棱錐D-EAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)之和為1+
5
,離心率為
2
5
5
.   
(Ⅰ)求橢圓的方程;
(Ⅱ)若C(l,0),過(guò)B(-1,0)作直線l交橢圓于M,N兩點(diǎn),且
CM
CN
=2,求△MNC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
8x2
81
+
y2
36
=1
上一點(diǎn)M的縱坐標(biāo)為2.
(1)求M的橫坐標(biāo);
(2)求過(guò)M且與
x2
9
+
y2
4
=1
共焦點(diǎn)的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若 0<α<
π
2
,-
π
2
<β<0,cos(α+
π
4
)=
1
3
,cos(
π
4
-
β
2
)=
3
3
,求cos(2α+β)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集∪=R,設(shè)集合A=[-1,+∞),集合B={x|x2+(4-a)x-4a>0},若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案