在△ABC中,a,b,c為內(nèi)角A,B,C的對邊,且有4sinAsinC-2cos(A-C)=1.
(Ⅰ)若a=3,c=4,求b;
(Ⅱ)求sinA+sinC的取值范圍.
考點:正弦定理,余弦定理
專題:解三角形
分析:(I)在△ABC中,化簡已知等式可得,cos(A+C)=-0.5,可得A+C=
2
3
π
,B=π-(A+C)=
π
3
.由余玄定理求得b的值.
(Ⅱ)依據(jù)條件利用兩角和差的三角公式化簡sinA+sinC為
3
sin(A+
π
6
)
,根據(jù)A∈(0,
2
3
π)
,利用正弦函數(shù)的定義域和值域求得sinA+sinC的取值范圍.
解答: 解:(I)在△ABC中,由題意得:4sinAsinC-2(cosAcosC+sinAsinC)=1,
整理化簡得:2sinAsinC-2cosAcosC=1,即cos(A+C)=-0.5,∴A+C=
3

在△ABC中,∵A+C=
2
3
π
,∴B=π-(A+C)=
π
3

由余玄定理得:b=
2accosB-a2+c2
=
13

(II)∵sinA+sinC=sinA+sin(
π
2
+
π
6
-A)=sinA+cos(
π
6
-A)=
3
2
sinA+
3
2
cosA
,
整理得:sinA+sinC=
3
sin(A+
π
6
)

A∈(0,
2
3
π)
,可令 m=A+
π
6
,∴m∈(
π
6
,
6
)

函數(shù)f(m)=
3
sinm
(
3
2
,
3
]
點評:本題主要考查兩角和差的三角公式,余弦定理、正弦定理的應(yīng)用,正弦函數(shù)的定義域元和值域,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某同學在研究函數(shù)f(x)=
ax
1+|x|
(x∈R,a>0)
時,分別給出下面幾個結(jié)論:
①等式f(-x)+f(x)=0對x∈R恒成立;
②函數(shù)f(x)的值域為[-a,a];
③函數(shù)f(x)為R的單調(diào)函數(shù);
④若x1≠x2,則一定有f(x1)≠f(x2);
⑤函數(shù)g(x)=f(x)-ax在R上有三個零點.
其中正確結(jié)論的序號有
 
.(請將你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)焦點的直線交拋物線于A、B兩點,則|AB|的最小值為( 。
A、
p
2
B、p
C、2p
D、無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為{x|-3≤x≤8,且x≠5},值域為{y|-1≤y≤2,且y≠0}.下列關(guān)于函數(shù)y=f(x)的說法:①當x=-3時,y=-1;②將y=f(x)的圖象補上點(5,0),得到的圖象必定是一條連續(xù)的曲線;③y=f(x)是[-3,5)上的單調(diào)函數(shù);④y=f(x)的圖象與坐標軸只有一個交點.其中正確命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班優(yōu)秀生16人,中等生24人,學困生8人,現(xiàn)采用分層抽樣的方法從這些學生中抽取6名學生做學習習慣調(diào)查,
(Ⅰ)求應(yīng)從優(yōu)秀生、中等生、學困生中分別抽取的學生人數(shù);
(Ⅱ)若從抽取的6名學生中隨機抽取2名學生做進一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2名學生均為中等生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)的動點P到兩定點M(-2,0)、N(1,0)的距離之比為2:1.
(Ⅰ)求P點的軌跡方程;
(Ⅱ)過M點作直線,與P點的軌跡交于不同兩點A、B,O為坐標原點,求△OAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩個地區(qū)高三年級分別有33000人,30000人,為了了解兩個地區(qū)全體高三年級學生在該地區(qū)二模考試的數(shù)學成績情況,采用分層抽樣方法從兩個地區(qū)一共抽取了105名學生的數(shù)學成績,并作出了如下的頻數(shù)分布統(tǒng)計表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)231015
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x31
乙地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1298
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計算x,y的值;
(Ⅱ)根據(jù)抽樣結(jié)果分別估計甲地區(qū)和乙地區(qū)的優(yōu)秀率;若將此優(yōu)秀率作為概率,現(xiàn)從乙地區(qū)所有學生中隨機抽取3人,求抽取出的優(yōu)秀學生人數(shù)ξ的數(shù)學期望;
(Ⅲ)根據(jù)抽樣結(jié)果,從樣本中優(yōu)秀的學生中隨機抽取3人,求抽取出的甲地區(qū)學生人數(shù)η的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點分別為F1、F2,過F1作直線交橢圓于P、Q兩點,△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點,
MF1
MF2
=1,求△MF1F2的面積最大時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,輸出的S=
 

查看答案和解析>>

同步練習冊答案