執(zhí)行如圖的程序框圖,輸出的S=
 

考點:循環(huán)結(jié)構(gòu)
專題:算法和程序框圖
分析:根據(jù)程序框圖的功能是求S=1•log23•log34…,判斷終止程序運行的k值,利用對數(shù)換底公式求得S值.
解答: 解:由程序框圖得:第一次運行S=1•log23,k=3;
第二次運行S=1•log23•log34,k=4;
第三次運行S=1•log23•log34•log45,k=5;

直到k=8時,程序運行終止,此時S=1•log23•log34…log78=
lg3
lg2
lg4
lg3
lg5
lg4
lg8
lg7
=log28=3.
故答案為:3.
點評:本題考查了循環(huán)結(jié)構(gòu)的程序框圖,判斷程序框圖的運行功能是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c為內(nèi)角A,B,C的對邊,且有4sinAsinC-2cos(A-C)=1.
(Ⅰ)若a=3,c=4,求b;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點F(1,0),右頂點A,且|AF|=1.
(1)求橢圓C的標準方程;
(2)若動直線l:y=kx+m與橢圓C有且只有一個交點P,且與直線x=4交于點Q,問:是否存在一個定點M(t,0),使得
MP
MQ
=0
.若存在,求出點M坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1 
(a>b>0)的右焦點F,拋物線:x2=4
2
y的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
=λ1
AF
,
MB
=λ2
BF
.試判斷λ12的值是否為定值,若是求出定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)當x∈[0,
π
2
]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設△ABC的內(nèi)角A,B,C的對應邊分別為a,b,c,且c=3,f(C)=2,若向量
m
=(1,sinA)與向量
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=ex定義域中的任意的x1,x2(x1≠x2),有如下結(jié)論:
(1)f(x1x2)=f(x1)+f(x2);    
(2)f(x1+x2)=f(x1)f(x2);
(3)
f(x1)-f(x2)
x1-x2
<0;       
 (4)
f(x1)-f(x2)
x1-x2
>0

(5)f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結(jié)論中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),A、B分別是橢圓長軸的兩個端點,M、N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,若|k1•k2|=
1
4
,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x+y-3≥0
x+2y-5≤0
y≥0
,則z=(x-1)2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,復數(shù)z=
2-i
1-i
=(  )
A、
3
2
+
1
2
i
B、
1
2
+
3
2
i
C、1+3i
D、3-i

查看答案和解析>>

同步練習冊答案