【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.

【答案】
(1)

解:橢圓 =1(a>b>0)的焦距為2c,

由CF1⊥x軸.則C(﹣c,y0),y0>0,

由C在橢圓上,則y0= ,則C(﹣c, ),

由OC∥AB,則﹣ =kOC=kAB=﹣ ,則b=c,

e= = = ,

e的值


(2)

解:設(shè)D(x1,y1),設(shè)

C(﹣c, ),F(xiàn)2(c,0),

=(2c,﹣ ), =(x1﹣c,y1),

,則2c=λ(x1﹣c),﹣ =λy1,則D( c,﹣ ),

由點D在橢圓上,則( )2e2+ =1,整理得:(λ2+4λ+3)e22﹣1,

由λ>0,e2= = =1﹣

≤e≤ ,則 ≤e2 ,則 ≤1﹣ ,

解得: ≤λ≤5,

的取值范圍[ ,5]


【解析】(1)由CF1⊥x軸.則C(﹣c, ),根據(jù)直線的斜率相等,即可求得b=c,利用離心率公式即可求得e的值;(2)根據(jù)向量的坐標(biāo)運算,求得D點坐標(biāo),代入橢圓方程,求得e2= =1﹣ ,由離心率的取值范圍,即可求得λ的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對邊分別為,向量(,

,滿足.

(1)求角的大小;

(2)設(shè) , 有最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對率也應(yīng)較高,如果是某次數(shù)學(xué)測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1)若,求使得成立的的集合;

(2)當(dāng)時,函數(shù)只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,=2=2.

(1)求證:

(2)求證:∥平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在試制某種洗滌劑新產(chǎn)品時,不同添加劑的種類以及添加的順序?qū)Ξa(chǎn)品的性質(zhì)都有影響,需要對各種不同的搭配方式做實驗進行比較.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用,根據(jù)試驗設(shè)計原理,需要隨機選取兩種不同的添加劑先后添加進行實驗.

(1)求兩種添加劑芳香度之和等于5的概率;

(2)求兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若函數(shù) 上的最小值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn , 數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=anbn , 設(shè)數(shù)列{cn}的前n項和為Tn , 求Tn

查看答案和解析>>

同步練習(xí)冊答案