【題目】已知不等式|2x-1|+|2x-2|<x+3的解集是A.
(Ⅰ)求集合A;
(Ⅱ)設x,y∈A,對任意a∈R,求證:xy(||x+a|-|y+a||)<x2+y2.
【答案】(Ⅰ)A={x|0<x<2}(Ⅱ)見解析
【解析】
(Ⅰ)利用零點分類法,進行求解不等式;
(Ⅱ)利用絕對值不等式的性質和基本不等式進行證明。
解:(Ⅰ)當x<時,不等式變形為1-2x+2-2x<x+3,解得0<x<;
當時,不等式變形為2x-1+2-2x<x+3,解得;
當x>1時,不等式變形為2x-1+2x-2<x+3,解得1<x<2;
綜上得A={x|0<x<2}.
(Ⅱ)∵x,y∈A,∴0<x,y<2,
∵||x+a|-|y+a||≤|(x+a)-(y+a)|=|x-y|,
∵0<x,y<2,∴-2<x-y<2,∴|x-y|<2,∴||x+a|-|y+a||<2,
∵+≥2=2,∴||x+a|-|y+a||<+,即xy(|x+a|-|y+a|)<x2+y2.
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率,左頂點為.過點作直線交橢圓于另一點,交軸于點,點為坐標原點.
(1)求橢圓的方程:
(2)已知為的中點,是否存在定點,對任意的直線,恒成立?若存在,求出點的坐標;若不存在說明理由;
(3)過點作直線的平行線與橢圓相交,為其中一個交點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知城市周邊有兩個小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,與夾角的正切值為2,為方便交通,現準備建設一條經過城市的公路,使鄉(xiāng)鎮(zhèn)和分別位于的兩側,過和建設兩條垂直的公路和,分別與公路交匯于、兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標系.
(1)當兩個交匯點、重合,試確定此時路段長度;
(2)當,計算此時兩個交匯點、到城市的距離之比;
(3)若要求兩個交匯點、的距離不超過,求正切值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為,,是拋物線上的兩個動點,且,過,兩點分別作拋物線的切線,設其交點為.
(1)若直線與,軸分別交于點,,且的面積為,求的值;
(2)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某校今年高三畢業(yè)班報考飛行員學生的體重情況,將所得的數據整理后,畫出了如圖所示的頻率分布直方圖.已知圖中從左到右的前三組的頻率之比為1:2:3,其中體重在的有5人.
(1)求該校報考飛行員的總人數;
(2)從該校報考飛行員的體重在學生中任選3人,設表示體重超過70的學生人數,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某教師將寒假期間該校所有學生閱讀小說的時間統(tǒng)計如下圖所示,并統(tǒng)計了部分學生閱讀小說的類型,得到的數據如下表所示:
男生 | 女生 | |
閱讀武俠小說 | 80 | 30 |
閱讀都市小說 | 20 | 70 |
(1)是否有99.9%的把握認為“性別”與“閱讀小說的類型”有關?
(2)求學生閱讀小說時間的眾數和平均數(同一組數據用該組區(qū)間的中點值作代表);
(3)若按照分層抽樣的方法從閱讀時間在、的學生中隨機抽取6人,再從這6人中隨機挑選2人介紹選取小說類型的緣由,求所挑選的2人閱讀時間都在的概率.
附:,.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓經過點,且點到橢圓的兩焦點的距離之和為.
(l)求橢圓的標準方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標原點,求證:三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com