精英家教網 > 高中數學 > 題目詳情

【題目】已知不等式|2x-1|+|2x-2|x+3的解集是A

(Ⅰ)求集合A

(Ⅱ)設x,yA,對任意aR,求證:xy||x+a|-|y+a||)<x2+y2

【答案】(Ⅰ)A={x|0x2}(Ⅱ)見解析

【解析】

(Ⅰ)利用零點分類法,進行求解不等式;

(Ⅱ)利用絕對值不等式的性質和基本不等式進行證明。

解:(Ⅰ)當x時,不等式變形為1-2x+2-2xx+3,解得0x

時,不等式變形為2x-1+2-2xx+3,解得;

x1時,不等式變形為2x-1+2x-2x+3,解得1x2;

綜上得A={x|0x2}

(Ⅱ)∵x,yA,∴0x,y2,

||x+a|-|y+a||≤|x+a-y+a|=|x-y|,

0x,y2,∴-2x-y2,∴|x-y|2,∴||x+a|-|y+a||2,

+≥2=2,∴||x+a|-|y+a||+,即xy|x+a|-|y+a|)<x2+y2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線,過點作斜率為的直線與拋物線交于不同的兩點,

1)求的取值范圍;

2)若為直角三角形,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.過點作直線交橢圓于另一點,交軸于點,點為坐標原點.

1)求橢圓的方程:

2)已知的中點,是否存在定點,對任意的直線恒成立?若存在,求出點的坐標;若不存在說明理由;

3)過點作直線的平行線與橢圓相交,為其中一個交點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知城市周邊有兩個小鎮(zhèn),其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,夾角的正切值為2,為方便交通,現準備建設一條經過城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側,過建設兩條垂直的公路,分別與公路交匯于、兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標系.

1)當兩個交匯點重合,試確定此時路段長度;

2)當,計算此時兩個交匯點、到城市的距離之比;

3)若要求兩個交匯點、的距離不超過,求正切值的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線與橢圓有相同的焦點.

求雙曲線的方程;

為中點作雙曲線的一條弦,求弦所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,,是拋物線上的兩個動點,且,過,兩點分別作拋物線的切線,設其交點為.

(1)若直線,軸分別交于點,且的面積為,求的值;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某校今年高三畢業(yè)班報考飛行員學生的體重情況,將所得的數據整理后,畫出了如圖所示的頻率分布直方圖.已知圖中從左到右的前三組的頻率之比為1:2:3,其中體重在的有5人.

(1)求該校報考飛行員的總人數;

(2)從該校報考飛行員的體重在學生中任選3人,設表示體重超過70的學生人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某教師將寒假期間該校所有學生閱讀小說的時間統(tǒng)計如下圖所示,并統(tǒng)計了部分學生閱讀小說的類型,得到的數據如下表所示:

男生

女生

閱讀武俠小說

80

30

閱讀都市小說

20

70

(1)是否有99.9%的把握認為“性別”與“閱讀小說的類型”有關?

(2)求學生閱讀小說時間的眾數和平均數(同一組數據用該組區(qū)間的中點值作代表);

(3)若按照分層抽樣的方法從閱讀時間在、的學生中隨機抽取6人,再從這6人中隨機挑選2人介紹選取小說類型的緣由,求所挑選的2人閱讀時間都在的概率.

附:,.

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓經過點,且點到橢圓的兩焦點的距離之和為.

(l)求橢圓的標準方程;

(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線交于點,為坐標原點,求證:三點共線.

查看答案和解析>>

同步練習冊答案