(本小題滿分12分)
已知雙曲線的方程為5x2-4y2=20,左右焦點分別為F1,F(xiàn)2   
(1)求此雙曲線的焦點坐標(biāo)和漸近線方程;
(2)若橢圓與此雙曲線有共同的焦點,且有一公共點P滿足|PF1|·|PF2|=6,求橢圓的標(biāo)準(zhǔn)方程.
解:(1)依題意有          

由于 ,故
,從而                        6分
(2)由已知可得
   從而        12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是雙曲線與橢圓的共同焦點,點是兩曲線的一個交點,且△為等腰三角形,則該雙曲線的漸近線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知斜率為1的直線與雙曲線相交于B、D兩點,且BD的中點為M(1,3)。
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點坐標(biāo)為(3,0),則以雙曲線的焦點為焦點,過直線上一點M作橢圓,要使所作橢圓的長軸最短,點M應(yīng)在何處?并求出此時的橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知雙曲線的一個焦點與拋物線的焦點重合,且該雙曲線的離心率為,則該雙曲線的漸近線方程為
A.2B.4C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的一個焦點到其漸近線的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(15分)(1)求以為漸近線,且過點的雙曲線的方程;
(2)求以雙曲線的頂點為焦點,焦點為頂點的橢圓的方程;
(3)橢圓上有兩點,為坐標(biāo)原點,若直線,斜率之積為,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)本題共有2個小題,第(1)小題滿分5分,第(2)小題滿分9分.
設(shè)雙曲線,是它實軸的兩個端點,是其虛軸的一個端點.已知其一條漸近線的一個方向向量是,的面積是,為坐標(biāo)原點,直線與雙曲線C相交于兩點,且
(1)求雙曲線的方程;
(2)求點的軌跡方程,并指明是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的左右焦點分別是,點是雙曲線右支上一點,且,則三角形的面積等于     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點是雙曲線上除頂點外的任意一點,分別為左、右焦點,為半焦距,的內(nèi)切圓與切于點,則         .

查看答案和解析>>

同步練習(xí)冊答案