(本小題滿分12分)已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù)(可以相同),使得不等式成立,求的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,有一塊半橢圓形鋼板,其長半軸長為,短半軸長為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點(diǎn)在橢圓上,記,梯形面積為S.
(1)求面積S以為自變量的函數(shù)式,并寫出其定義域;
(2)求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)某經(jīng)銷商用一輛J型卡車將某種水果從果園運(yùn)送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,J型卡車滿載行駛時(shí),每100km所消耗的燃油量u(單位:
資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為每升(L)7.5元.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為y(元)(不計(jì)返程費(fèi)用),將y表示成速度v的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題11分)如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列四個(gè)判斷:
①;
②已知隨機(jī)變量X服從正態(tài)分布N(3,),P(X≤6)=0.72,則P(X≤0)=0.28;
③已知的展開式的各項(xiàng)系數(shù)和為32,則展開式中x項(xiàng)的系數(shù)為20;
④
其中正確的個(gè)數(shù)有:
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商家經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個(gè)月能售出500kg;銷售單價(jià)每漲1元,月銷售量就減少10kg,針對這種銷售情況,
(1)設(shè)銷售單價(jià)為每千克x元,月銷售利潤為y元,求y與x的函數(shù)關(guān)系式;
商店想在月銷售成本不超過10000元的情況下,使得月銷售利潤不少于8000元,銷售單價(jià)應(yīng)定為多少元時(shí),利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)若定義在上的函數(shù)同時(shí)滿足下列三個(gè)條件:
①對任意實(shí)數(shù)均有成立;
②;
③當(dāng)時(shí),都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(1)設(shè),若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com