(本題滿分14分)若定義在上的函數(shù)同時滿足下列三個條件:
①對任意實數(shù)均有成立;
;
③當時,都有成立。
(1)求,的值;
(2)求證:上的增函數(shù)
(3)求解關(guān)于的不等式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)求實數(shù)c的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某化工廠生產(chǎn)的某種化工產(chǎn)品,當年產(chǎn)量在150噸至250噸之間時,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式近似地表示為.問:(1)每噸平均出廠價為16萬元,年產(chǎn)量為多少噸時,可獲得最大利潤?并求出最大利潤;
(2)年產(chǎn)量為多少噸時,每噸的平均成本最低?并求出最低成本。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)和點,過點作曲線的兩條切線,切點分別為、
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個實數(shù)(可以相同),使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(本小題滿分12分)
(1)求的定義域;
(2)問是否存在實數(shù),當時,的值域為,且 若存在,求出、的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知某商品的價格上漲x%,銷售的數(shù)量就減少mx%,其中m為正的常數(shù)。
(1)當m=時,該商品的價格上漲多少,就能使銷售的總金額最大?
(2)如果適當?shù)貪q價,能使銷售總金額增加,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品
的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)在區(qū)間上單調(diào)遞減,則的最大值是(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案