【題目】為了得到函數(shù)的圖象,只需把函數(shù),的圖象上所有的點(diǎn)(

A.向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

B.向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

C.向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

D.向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

【答案】C

【解析】

按照平移變換和周期變換的結(jié)論,分別求出四個(gè)選項(xiàng)中得到的函數(shù)解析式可得答案.

對(duì)于,把函數(shù),的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,故不正確;

對(duì)于,把函數(shù),的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,故不正確;

對(duì)于,把函數(shù),的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,故正確;

對(duì)于,把函數(shù),的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,故不正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)發(fā)展史知識(shí)測(cè)驗(yàn)后,甲、乙、丙三人對(duì)成績(jī)進(jìn)行預(yù)測(cè):

甲說:我的成績(jī)比乙高;

乙說:丙的成績(jī)比我和甲的都高;

丙說:我的成績(jī)比乙高.

成績(jī)公布后,三人成績(jī)互不相同且只有一個(gè)人預(yù)測(cè)正確,那么三人中預(yù)測(cè)正確的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線與橢圓交于兩點(diǎn),的周長(zhǎng)為8,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)是橢圓上兩動(dòng)點(diǎn),線段的中點(diǎn)為的斜率分別為為坐標(biāo)原點(diǎn)),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的最大值和最小值;

2)求證:當(dāng)時(shí),函數(shù)的圖象在的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,,橢圓的長(zhǎng)軸長(zhǎng)與焦距之比為,過的直線交于,兩點(diǎn).

(1)當(dāng)的斜率為時(shí),求的面積;

(2)當(dāng)線段的垂直平分線在軸上的截距最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下五個(gè)結(jié)論:

①函數(shù)是偶函數(shù);

②當(dāng)時(shí),函數(shù)的值域是

③等差數(shù)列的前項(xiàng)和為,若,則;

④已知定義域?yàn)?/span>的函數(shù),當(dāng)且僅當(dāng)時(shí),成立.

函數(shù)的最小值4;

則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直接坐標(biāo)系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;

II)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,E,F分別為A1C1BC的中點(diǎn),M,N分別為A1BA1C的中點(diǎn).求證:

1MN∥平面ABC;

2EF∥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抑制房?jī)r(jià)過快上漲和過度炒作,各地政府響應(yīng)中央號(hào)召,因地制宜出臺(tái)了系列房?jī)r(jià)調(diào)控政策.某市為擬定出臺(tái)房產(chǎn)限購的年齡政策”.為了解人們對(duì)房產(chǎn)限購年齡政策的態(tài)度,對(duì)年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持房產(chǎn)限購的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對(duì)房產(chǎn)限購年齡政策的支持度有差異;

44歲以下

44歲以上

總計(jì)

支持

不支持

總計(jì)

2)若以44歲為分界點(diǎn),從不支持房產(chǎn)限購的人中按分層抽樣的方法抽取8人參加政策聽證會(huì).現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是44歲以下時(shí),求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案