【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線,的公共點(diǎn)為.

求直線的斜率;

Ⅱ)若點(diǎn)分別為曲線,上的動(dòng)點(diǎn),當(dāng)取最大值時(shí),求四邊形的面積.

【答案】)2;(Ⅱ)

【解析】

(Ⅰ)消去參數(shù)α得曲線C1的普通方程,將曲線C2化為直角坐標(biāo)方程,兩式作差得直線AB的方程,則直線AB的斜率可求;

Ⅱ)由C1方程可知曲線是以C1(0,1)為圓心,半徑為1的圓,由C2方程可知曲線是以C2(2,0)為圓心,半徑為2的圓,又|CD|≤|CC1|+|C1C2|+|DC2|,可知當(dāng)|CD|取最大值時(shí),圓心C1,C2在直線AB上,進(jìn)一步求出直線CD(即直線C1C2)的方程,再求出O到直線CD的距離,則四邊形ACBD的面積可求.

Ⅰ)消去參數(shù)α得曲線C1的普通方程C1:x2+y2﹣2y=0.…(1)

將曲線C2:ρ=4cosθ化為直角坐標(biāo)方程得x2+y2﹣4x=0.…(2)

由(1)﹣(2)化簡得y=2x,即為直線AB的方程,故直線AB的斜率為2;

Ⅱ)由C1:x2+y2﹣2y=0知曲線C1是以C1(0,1)為圓心,半徑為1的圓,

C2:x2+y2﹣4x=0知曲線C2:是以C2(2,0)為圓心,半徑為2的圓.

∵|CD|≤|CC1|+|C1C2|+|DC2|,

∴當(dāng)|CD|取最大值時(shí),圓心C1,C2在直線CD上,

∴直線CD(即直線C1C2)的方程為:2x+y=2.

O到直線CD的距離為,即|AB|=

又此時(shí)|CD|=|C1C2|+1+2=3+

∴四邊形ACBD的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售進(jìn)價(jià)為每箱40元的蘋果,假設(shè)每箱售價(jià)不低于50元且不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3.

1)求平均每天的銷售量y(箱)與銷售單價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋果的售價(jià)為多少元時(shí),每天可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰梯形中,,分別為,的中點(diǎn),,中點(diǎn)現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,

(1)證明:;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實(shí)數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為高消費(fèi)群” .

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為高消費(fèi)群與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式:,其中

P()

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)療器械公司在全國共有個(gè)銷售點(diǎn),總公司每年會(huì)根據(jù)每個(gè)銷售點(diǎn)的年銷量進(jìn)行評價(jià)分析.規(guī)定每個(gè)銷售點(diǎn)的年銷售任務(wù)為一萬四千臺器械.根據(jù)這個(gè)銷售點(diǎn)的年銷量繪制出如下的頻率分布直方圖.

(1)完成年銷售任務(wù)的銷售點(diǎn)有多少個(gè)?

(2)若用分層抽樣的方法從這個(gè)銷售點(diǎn)中抽取容量為的樣本,求該五組,,,,,(單位:千臺)中每組分別應(yīng)抽取的銷售點(diǎn)數(shù)量.

(3)在(2)的條件下,從該樣本中完成年銷售任務(wù)的銷售點(diǎn)中隨機(jī)選取個(gè),求這兩個(gè)銷售點(diǎn)不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2名男生、3名女生,全體排成一行,問下列情形各有多少種不同的排法?(以下各題請用數(shù)字作答)

1)甲不在中間也不在兩端;

2)甲、乙兩人必須排在兩端;

3)男、女生分別排在一起;

4)男女相間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),直線與坐標(biāo)軸的交點(diǎn)是橢圓的兩個(gè)頂點(diǎn).

(1)求橢圓的方程;

(2)若是橢圓上的兩點(diǎn),且滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有10條產(chǎn)品生產(chǎn)線,不超過5條生產(chǎn)線正常工作時(shí),每條生產(chǎn)線每天純利潤為1100元,超過5條生產(chǎn)線正確工作時(shí),超過的生產(chǎn)線每條純利潤為800元,原生產(chǎn)線利潤保持不變.未開工的生產(chǎn)線每條每天的保養(yǎng)等各種費(fèi)用共100元.用x表示每天正常工作的生產(chǎn)線條數(shù),用y表示公司每天的純利潤.

(I)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出純利潤為7700元時(shí)工作的生產(chǎn)線條數(shù).

(II)為保證新開的生產(chǎn)線正常工作,需對新開的生產(chǎn)線進(jìn)行檢測,現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計(jì)值.為檢測該生產(chǎn)線生產(chǎn)狀況,現(xiàn)從加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評判(P表示對應(yīng)事件的概率)

評判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線.試判斷該生產(chǎn)線是否需要檢修.

查看答案和解析>>

同步練習(xí)冊答案