【題目】已知數(shù)列的前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;

)在()的條件下,設(shè),問是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

【答案】;⑵.

【解析】

試題(1)由遞推關(guān)系式消去,可得,數(shù)列為等比數(shù)列,且首項(xiàng)為,公比,所以.(2)由遞推得:

兩式相減得:

當(dāng)時(shí),所以

(3) 因?yàn)?/span>

所以當(dāng)時(shí),

依據(jù)題意,有

分類討論,為奇數(shù)或偶數(shù),分離參數(shù)即可求出的取值范圍是

試題解析:⑴ 由兩式相減,得

所以由又

所以數(shù)列為等比數(shù)列,且首項(xiàng)為,公比,所以

⑵ 由 ⑴ 知

當(dāng)時(shí),所以

⑶ 因?yàn)?/span>

所以當(dāng)時(shí),

依據(jù)題意,有

①當(dāng)為大于或等于的偶數(shù)時(shí),有恒成立.

增大而增大,

則當(dāng)且僅當(dāng)時(shí),的取值范圍為

②當(dāng)為大于或等于的奇數(shù)時(shí),有恒成立,且僅當(dāng)時(shí),

的取值范圍為

又當(dāng)時(shí),由

綜上可得,所求的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在區(qū)間上恒成立,求a的取值范圍.

(2)對(duì)任意,總存在唯一的,使得成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓柱體的一條母線,過底面圓的圓心是圓上不與、重合的任意一點(diǎn),已知棱,,.

1)求異面直線與平面所成角的大。

2)將四面體繞母線旋轉(zhuǎn)一周,求三邊旋轉(zhuǎn)過程中所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,的中點(diǎn),現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1取何值時(shí),方程)無解?有一解?有兩解?有三解?

2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞颍芯亢瘮?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使得上的奇函數(shù),則稱是位差值為的“位差奇函數(shù)”.

1)判斷函數(shù)是否為位差奇函數(shù)?說明理由;

2)若是位差值為的位差奇函數(shù),求的值;

3)若對(duì)任意屬于區(qū)間中的都不是位差奇函數(shù),求實(shí)數(shù)、滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),如果存在實(shí)數(shù),且不同時(shí)成立),使得對(duì)恒成立,則稱函數(shù)映像函數(shù)”.

1)判斷函數(shù)是否是映像函數(shù),如果是,請(qǐng)求出相應(yīng)的的值,若不是,請(qǐng)說明理由;

2)已知函數(shù)是定義在上的映像函數(shù),且當(dāng)時(shí),.求函數(shù))的反函數(shù);

3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

同步練習(xí)冊(cè)答案