【題目】如圖,矩形中,,,為的中點(diǎn),現(xiàn)將與折起,使得平面及平面都與平面垂直.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)過(guò)點(diǎn)作于,過(guò)點(diǎn)作于,連接,利用面面垂直的性質(zhì)定理證明平面,平面,可得出,并證明出,可證明出四邊形為平行四邊形,于是有,再利用直線與平面平行的判定定理可證明出平面;
(2)以為原點(diǎn),為軸,為軸,建立空間直角坐標(biāo)系,利用空間向量法可計(jì)算出二面角的余弦值.
(1)過(guò)點(diǎn)作于,過(guò)點(diǎn)作于,連接.
平面及平面都與平面垂直,
平面平面,,平面,平面,同理可證平面,.
矩形中,與全等,.
四邊形是平行四邊形,.
又平面,平面,平面;
(2)矩形中,,以為原點(diǎn),為軸,為軸,建立空間直角坐標(biāo)系,
則、、,
,,
設(shè)平面的法向量為,則,即,
令,得,則,
易得平面的法向量為,,
因此,二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的展開(kāi)圖如圖二,其中四邊形為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐中:
(1)證明:平面平面;
(2)若是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年1月1日新修訂的個(gè)稅法正式實(shí)施,規(guī)定:公民全月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累計(jì)計(jì)算(預(yù)扣):
全月應(yīng)繳納所得額 | 稅率 |
不超過(guò)3000元的部分 | |
超過(guò)3000元至12000元的部分 | |
超過(guò)12000元至25000元的部分 |
國(guó)家在實(shí)施新個(gè)稅時(shí),考慮到納稅人的實(shí)際情況,實(shí)施了《個(gè)人所得稅稅前專(zhuān)項(xiàng)附加扣稅暫行辦法》,具體如下表:
項(xiàng)目 | 每月稅前抵扣金額(元) | 說(shuō)明 |
子女教育 | 1000 | 一年按12月計(jì)算,可扣12000元 |
繼續(xù)教育 | 400 | 一年可扣除4800元,若是進(jìn)行技能職業(yè)教育或者專(zhuān)業(yè)技術(shù)職業(yè)資格教育一年可扣除3600元 |
大病醫(yī)療 | 5000 | 一年最高抵扣金額為60000元 |
住房貸款利息 | 1000 | 一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來(lái)扣除 |
住房租金 | 1500/1000/800 | 扣除金額需要根據(jù)城市而定 |
2000 | 一年可扣除24000元,若不是獨(dú)生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上 |
老李本人為獨(dú)生子女,家里有70歲的老人需要贍養(yǎng),有一個(gè)女兒正讀高三,他每月還需繳納住房貸款2734元.若2019年11月老李工資,薪金所得為20000元,按照《個(gè)人所得稅稅前專(zhuān)項(xiàng)附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條公共汽車(chē)線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車(chē)票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車(chē)票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車(chē)票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集為,,定義集合的特征函數(shù)為,對(duì)于,,給出下列四個(gè)結(jié)論:
(1)對(duì)任意,有
(2)對(duì)任意,若,則
(3)對(duì)任意,有
(4)對(duì)任意,有
其中,正確的序號(hào)是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且
()求數(shù)列的通項(xiàng)公式;
()若數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;
()在()的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,橢圓()的短軸長(zhǎng)等于圓半徑的倍,的離心率為.
(1)求的方程;
(2)若直線與交于兩點(diǎn),且與圓相切,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,平面平面,.
(1)求證:;
(2)求二面角的余弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在,求的值?若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com