【題目】已知拋物線方程,為焦點(diǎn),為拋物線準(zhǔn)線上一點(diǎn),為線段與拋物線的交點(diǎn),定義:.

(1)當(dāng)時(shí),求

(2)證明:存在常數(shù),使得.

(3)為拋物線準(zhǔn)線上三點(diǎn),且,判斷的關(guān)系.

【答案】(1);(2)證明見(jiàn)解析;(3).

【解析】

1)根據(jù),可以求出直線的斜率,這樣可以求出直線的方程,與拋物線方程聯(lián)立,求出的坐標(biāo),求出的值;

2)當(dāng),可以求出的值;由拋物線的對(duì)稱性,可設(shè),

設(shè)出直線的方程,與拋物線方程聯(lián)立,可以求出的坐標(biāo),可以證明出,這樣就證明出存在常數(shù),使得;

3)設(shè),利用拋物線的定義,計(jì)算,

用作差法比較的大小,最后用作差法比較

的大小,最后判斷出.

(1)因?yàn)?/span>.

聯(lián)立方程

.

(2)當(dāng),易得,

不妨設(shè),,

直線,則

聯(lián)立,

,

.

(3)設(shè),則

,

因?yàn)?/span>

,

又因

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的方程為,集合,若對(duì)于任意的,都存在,使得成立,則稱曲線曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號(hào))

;②;③;④;⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,其中,點(diǎn)是橢圓的右頂點(diǎn),射線與橢圓的交點(diǎn)為.

1)求點(diǎn)的坐標(biāo);

2)設(shè)橢圓的長(zhǎng)半軸、短半軸的長(zhǎng)分別為、,當(dāng)的值在區(qū)間中變化時(shí),求的取值范圍;

3)在(2)的條件下,以為焦點(diǎn),為頂點(diǎn)且開(kāi)口方向向左的拋物線過(guò)點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司航拍宣傳畫(huà)報(bào),為了凸顯公司文化,選擇如圖所示的邊長(zhǎng)為2百米的正三角形空地進(jìn)行布置拍攝場(chǎng)景,在的中點(diǎn)處安裝中央聚光燈,為邊上得可以自由滑動(dòng)的動(dòng)點(diǎn),其中設(shè)置為普通色彩燈帶(燈帶長(zhǎng)度可以自由伸縮),線段部分需要材料 (單位:百米)裝飾用以增加拍攝效果因材料價(jià)格昂貴,所以公司要求采購(gòu)材料使用不造成浪費(fèi).

(1)當(dāng),垂直時(shí),采購(gòu)部需要采購(gòu)多少百米材料

(2)為了增加拍攝動(dòng)態(tài)效果需要,現(xiàn)要求點(diǎn)邊上滑動(dòng),且,則購(gòu)買材料的范圍是多少才能滿足動(dòng)態(tài)效果需要又不會(huì)造成浪費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求實(shí)數(shù)的取值范圍;

(3)定義:如果實(shí)數(shù)滿足, 那么稱更接近.對(duì)于(2)中的,問(wèn):哪個(gè)更接近?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.

I)證明:;

II)求直線與平面所成角的正弦值;

III)在邊上是否存在點(diǎn),使所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),若函數(shù)滿足:,都有,就稱這個(gè)函數(shù)是點(diǎn)的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)的“限定函數(shù)”的序號(hào)是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)的“限定函數(shù)”,則的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)營(yíng)銷人員進(jìn)行某商品的市場(chǎng)營(yíng)銷調(diào)查時(shí)發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)試點(diǎn)統(tǒng)計(jì)得到以下表:

反饋點(diǎn)數(shù)t

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.試預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天的銷量;

(Ⅱ)若節(jié)日期間營(yíng)銷部對(duì)商品進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買該商品的消費(fèi)群體十分龐大,經(jīng)營(yíng)銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

頻數(shù)

20

60

60

30

20

10

將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費(fèi)者的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形ABC為直角三角形,且,,E,F分別為AB,AC的中點(diǎn),G,H分別為BE,AF的中點(diǎn)(如圖一),現(xiàn)在沿EF將三角形AEF折起至,連接,,GH(如圖二).

1)證明:平面;

2)當(dāng)平面平面EFCB時(shí),求異面直線GHEF所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案