【題目】隨著人們生活水平的提高,越來(lái)越多的人愿意花更高的價(jià)格購(gòu)買手機(jī).某機(jī)構(gòu)為了解市民使用手機(jī)的價(jià)格情況,隨機(jī)選取了100人進(jìn)行調(diào)查,并將這100人使用的手機(jī)價(jià)格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:

(1)求圖中的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);

(3)利用分層抽樣從手機(jī)價(jià)格在的人中抽取5人,并從這5人中抽取2人進(jìn)行訪談,求抽取出的2人的手機(jī)價(jià)格在不同區(qū)間的概率.

【答案】(1);(2)平均數(shù)3720,中位數(shù)3750;(3).

【解析】

1)利用矩形面積之和為,構(gòu)造方程解出;(2)根據(jù)頻率分布直方圖估計(jì)平均數(shù)和中位數(shù)的方法,直接計(jì)算即可;(3)首先確定來(lái)自的人數(shù),然后采用列舉法求解出結(jié)果.

(1)由題意知:

解得

(2)平均數(shù)

(元)

前三組的頻率之和為

前四組的頻率之和為

故中位數(shù)落在第四組.

設(shè)中位數(shù)為,則,解得

(3)由圖知手機(jī)價(jià)格在的人數(shù)之比為,故用分層抽樣抽取的人中,來(lái)自區(qū)間的有人,設(shè)為,來(lái)自的有人,設(shè)為

則從這人中抽取出人的取法有,,,,,,,,共

其中抽取出的人的手機(jī)價(jià)格在不同區(qū)間的有,,,,,共

故抽取出的人的手機(jī)價(jià)格在不同區(qū)間的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)F1、F2分別為橢圓E的左、右焦點(diǎn),AB分別是橢圓E的左、右頂點(diǎn),D(1,0)為線段OF2的中點(diǎn).

(1)求橢圓E的方程;

(2)M為橢圓上的動(dòng)點(diǎn)(異于AB),連接MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連接MDND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連接PQ設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)題是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b表示兩條直線,,表示三個(gè)不重合的平面,給出下列命題:

①若,,則;

②若ab相交且都在,外,,,,則;

③若,則

④若,,且,則

⑤若,,則.

其中正確命題的序號(hào)是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,是正方形,,,且,,、分別為棱、的中點(diǎn).

(1)求證:平面

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnx,其中a0.曲線y=fx)在點(diǎn)(1f1))處的切線與直線y=x+1垂直.

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求函數(shù)fx)在區(qū)間[1e]上的極值和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將具有如下性質(zhì)的3×3方格表稱為“T-網(wǎng)格”:

(1)五個(gè)格填1,四個(gè)格填0;

(2)三行、三列以及兩條對(duì)角線共八條線上至多有一條,其中三個(gè)數(shù)兩兩相等。

則不同的T-網(wǎng)格共有________個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒.北京某綜合大學(xué)計(jì)劃在一年級(jí)開(kāi)設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒(méi)有興趣.

(1)完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為對(duì)冰球是否有興趣與性別有關(guān)”?

有興趣

沒(méi)興趣

合計(jì)

55

合計(jì)

(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔R荒昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072/p>

2.706

3.841

5.024

6.635

參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案