【題目】將具有如下性質(zhì)的3×3方格表稱為“T-網(wǎng)格”:
(1)五個格填1,四個格填0;
(2)三行、三列以及兩條對角線共八條線上至多有一條,其中三個數(shù)兩兩相等。
則不同的T-網(wǎng)格共有________個。
【答案】68
【解析】
首先,五個1和四個0填人3×3方格表的所有方法數(shù)為.
接下來考慮不符合性質(zhì)(2)的方法數(shù),即使得八條線中至少有兩條線上的三個數(shù)相等(以下簡稱為好線).
下面分類進行計數(shù).好線可能為行、列或?qū)蔷.
若兩條好線均為行(或列),則其中一行填0,一行填1,共有種,由行與列的對稱性,共2×18=36種;
若兩條好線一條為行,另一條為列,此時,好線均填1,有3×3=9種;
若兩條好線一條為行,另一條為對角線,此時,好線均填1,有3×2=6種;
若兩條好線一條為列,另一條為對角線,此時,好線均填1,有3×2=6種.
故滿足性質(zhì)的方法種數(shù)為126-1-36-9-6-6=68.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)與函數(shù),為“同族函數(shù)”.下面函數(shù)解析式中能夠被用來構(gòu)造“同族函數(shù)”的是( )
A.B.C.
D.E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,點在橢圓上,且滿足.
(1)求橢圓的方程;
(2)設(shè)傾斜角為的直線與交于,兩點,記的面積為,求取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價格購買手機.某機構(gòu)為了解市民使用手機的價格情況,隨機選取了100人進行調(diào)查,并將這100人使用的手機價格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:
(1)求圖中的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣從手機價格在和的人中抽取5人,并從這5人中抽取2人進行訪談,求抽取出的2人的手機價格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點F傾斜角為的直線交橢圓M于A、B兩點.
(1)求橢圓M的方程;
(2)求證:
(3)設(shè)過右焦點F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學(xué)生們旅游動機強烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個巨大的市場.為了解大學(xué)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學(xué)的名學(xué)生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認為學(xué)生的旅游費用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計有多少位同學(xué)旅游費用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級200名學(xué)生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時間(單位:小時) | 不少于28小時 | ||||
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計戶外暴露時間不少于28小時的4名學(xué)生中,隨機抽取2名,求其中恰有一名學(xué)生不近視的概率;
(2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時間 | ||
不足夠的戶外暴露時間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com