【題目】已知函數(shù) ( 為實常數(shù)).
(1)若 , ,求 的單調(diào)區(qū)間;
(2)若 ,且 ,求函數(shù) 上的最小值及相應的 值;
(3)設 ,若存在 ,使得 成立,求實數(shù) 的取值范圍.

【答案】
(1)解: 時, ,

定義域為 ,

上, ,當 時, ;當 時,

所以,函數(shù) 的單調(diào)增區(qū)間為 ;單調(diào)減區(qū)間為


(2)解:因為 ,所以 , ,

(Ⅰ)若 , 上非負(僅當 時, ),

故函數(shù) 上是增函數(shù),此時

(Ⅱ)若 ,

時, ,

時, ,此時 是減函數(shù);

時, ,此時 是增函數(shù),


(3)解: ,

不等式 ,即 可化為

因為 , 所以 且等號不能同時取,

所以 ,即 ,因而

),又

時, ,

從而 (僅當 時取等號),所以 上為增函數(shù),

的最小值為 ,所以實數(shù) 的取值范圍是


【解析】(1)首先求出函數(shù)的導函數(shù),解關于導函數(shù)的不等式求出函數(shù)的單調(diào)區(qū)間即可。(2)求出函數(shù)的導函數(shù)通過討論a的取值范圍求出函數(shù)的單調(diào)區(qū)間進而求出函數(shù)的最小值即可。(3)根據(jù)題意把問題轉(zhuǎn)化為( x ∈ [ 1 , e ] )構(gòu)造函數(shù)g(x),利用該函數(shù)的單調(diào)性即可求出a 的取值范圍。
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在 軸上,離心率為 ,且經(jīng)過點 ,直線 交橢圓于 , 兩不同的點.
(1)求橢圓的方程;
(2)若直線 不過點 ,求證:直線 , 軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個三等分點(靠近點B),記 ,則當λ取最大值時,tan∠ACD=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 方程 有兩個不等的負根, 方程 無實根,若“ ”為真,“ ”為假,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)當a=2時,求不等式f(x)>3的解集
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種汽車購買時費用為16.9萬元,每年應交付保險費、汽油費共0.9萬元,汽車的維修保養(yǎng)費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……依等差數(shù)列逐年遞增.

(1)求該車使用了3年的總費用(包括購車費用)為多少萬元?

(2)設該車使用年的總費用(包括購車費用)為),試寫出的表達式;

(3)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對新款夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A

B

C

售價x(元)

80

86

82

88

84

90

銷量y(件)

88

78

85

75

82

66


(1)分別以三家連鎖店的平均售價與平均銷量為散點,求出售價與銷量的回歸直線方程 ;
(2)在大量投入市場后,銷量與單價仍然服從(1)中的關系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元?(保留整數(shù))
附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是(
A.[0,
B.[ ,1)
C.[1,8)
D.[8,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,實數(shù) , 滿足 ,若 , ,使得 成立,則 的最大值為( )
A.4
B.
C.
D.3

查看答案和解析>>

同步練習冊答案