【題目】設(shè) 方程 有兩個(gè)不等的負(fù)根, 方程 無實(shí)根,若“ ”為真,“ ”為假,求實(shí)數(shù) 的取值范圍.

【答案】解:若方程 有兩個(gè)不等的負(fù)根,則 ,解得 .

若方程 無實(shí)根,

,

解得: ,即

因“ ”為真,所以 至少有一為真,又“ ”為假,所以 至少有一為假,

因此, 兩命題應(yīng)一真一假,即 為真, 為假或 為假, 為真

.

解得:


【解析】首先根據(jù)題意分別求出命題p和命題q的最簡形式,再結(jié)合復(fù)合命題的真假即可得出命題p和命題q有一個(gè)是真一個(gè)是假,分情況討論再把兩種情況的結(jié)果并起來即可得到m的取值范圍。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實(shí)數(shù)根”的否命題為真命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, , 平面ABCD⊥平面ABFE.

(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 底面 ,底面 為直角梯形, , , , 的中點(diǎn),平面 點(diǎn).、

(1)求證: ;
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ax,(a∈R),其圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),且x1<x2
(1)求a的取值范圍;
(2)證明: ;(f′(x)為f(x)的導(dǎo)函數(shù))
(3)設(shè)點(diǎn)C在函數(shù)f(x)的圖象上,且△ABC為等邊三角形,記 ,求(t﹣1)(a+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ( 為實(shí)常數(shù)).
(1)若 , ,求 的單調(diào)區(qū)間;
(2)若 ,且 ,求函數(shù) 上的最小值及相應(yīng)的 值;
(3)設(shè) ,若存在 ,使得 成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
將圓 為參數(shù))上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼? ,得到曲線
(1)求曲線 的普通方程;
(2)設(shè) , 是曲線 上的任意兩點(diǎn),且 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn) 且與橢圓 有相同的焦點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn) 在雙曲線上, 為左,右焦點(diǎn),且 ,試求△ 的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案