已知數(shù)列{an}滿足an=2n-1,設(shè)函數(shù)f(n)=
an,n為奇數(shù)
f(
n
2
),n為偶數(shù)
,cn=f(2n+4),n∈N*,數(shù)列{cn}的前n項和Tn=
 
考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:T1=c1=a3=2×3-1=5,c2=a1=3,n≥3時,cn=f(2n+4)=f(2n-1+2)=f(2n-2+1)=2(2n-2+1)-1=2n-1+1,由此能求出Tn
解答: 解:由題意知:
n=1時,T1=c1=f(2+4)=f(3)=a3=2×3-1=5;
c2=f(22+4)=f(4)=f(2)=f(1)=a1=2×1+1=3,
n≥3時,cn=f(2n+4)=f(2n-1+2)=f(2n-2+1)
=2(2n-2+1)-1=2n-1+1,
∴n≥2時,Tn=5+1+(22+1)+(23+1)+…+(2n-1+1)
=1+2+22+23+…+2n-1+n+1
=2n+n.
∴Tn=
5,n=1
2n+n,n≥2

故答案為:
5,n=1
2n+n,n≥2
點評:本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意分組求和法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用數(shù)字1,2,3,4可以排成沒有重復數(shù)字的四位偶數(shù),共有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3-3x2+1的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正四棱錐的側(cè)棱長為3,則其體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

十六個圖釘組成如圖所示的四行四列的方陣,從中任取三個圖釘,則至少有兩個位于同行或同列的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖的三角形數(shù)陣中,滿足:(1)第1行的數(shù)為1;(2)第n(n≥2)行首尾兩數(shù)均為n,其余的數(shù)都等于它肩上的兩個數(shù)相加,則第25行中第2個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=-7,a7=-4,則數(shù)列{an}的前
 
項和最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
+lnx-2mx在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“存在x0∈R,使2x0≤0”的否定是( 。
A、不存在x0∈R,使2x0>0
B、存在x0∈R,使2x0≥0
C、對任意的x∈R,使2x≤0
D、對任意的x∈R,使2x>0

查看答案和解析>>

同步練習冊答案