【題目】已知定義在R上的函數(shù),為常數(shù),且是函數(shù)的一個極值點.
(Ⅰ)求的值;
(Ⅱ)若函數(shù),,求的單調區(qū)間;
(Ⅲ) 過點可作曲線的三條切線,求的取值范圍
【答案】(Ⅰ);(Ⅱ)函數(shù)的單調增區(qū)間為和,單調減區(qū)間為;(Ⅲ).
【解析】
(I)由求得值,同時要檢驗此時是極值點;
(II)求出,由的正負得函數(shù)的單調區(qū)間,即由得增區(qū)間,由得減區(qū)間
(III)設切點為,則切線的斜率為,整理得,此方程有3個根. 為此設,則的極大值大于0,極小值小于0,由此可得的范圍.
(Ⅰ),是函數(shù)的一個極值點,則
又,函數(shù)在兩側的導數(shù)異號,
(Ⅱ)由(Ⅰ)知,
則,令,得.
隨的變化,與的變化如下:
0 | 0 | ||||
極大值 | 極小值 |
所以函數(shù)的單調增區(qū)間為和,單調減區(qū)間為.
(Ⅲ),設切點為,則切線的斜率為
,
整理得,依題意,方程有3個根.
設,則
令,得,則在區(qū)間,上單調遞增,在區(qū)間上單調遞減,
因此,解得.所以的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】某工科院校對A、B兩個專業(yè)的男、女生人數(shù)進行調查統(tǒng)計,得到以下表格:
專業(yè)A | 專業(yè)B | 合計 | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計 | 50 | 100 |
如果認為工科院校中“性別”與“專業(yè)”有關,那么犯錯誤的概率不會超過( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】吸煙有害健康,遠離煙草,珍惜生命。據(jù)統(tǒng)計一小時內吸煙5支誘發(fā)腦血管病的概率為0.02,一小時內吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時內吸煙5支未誘發(fā)腦血管病,則他在這一小時內還能繼吸煙5支不誘發(fā)腦血管病的概率為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線和直線的直角坐標方程;
(2)若直線與軸交點記為,與曲線交于,兩點,Q在x軸下方,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.
(1)求曲線的極坐標方程,并化為直角坐標方程;
(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),是上的動點,點滿足,點的軌跡為曲線.
(Ⅰ)求的普通方程;
(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,直線與交于,兩點,交軸于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com