已知函數(shù)y=Asin(ωx+?)+K的一部分圖象如圖所示,如果A>0,ω>0,|?|<
π
2
,則f(
12
)=
2-
3
2-
3
分析:由圖可知A=2,k=2,由
1
4
T=
π
4
可求得ω=2,ω•
π
6
+φ=
π
2
可求得φ,從而可求f(
12
).
解答:解:由圖可知A=2,k=
4+0
2
=2,
1
4
T=
12
-
π
6
=
π
4
,ω>0,
∴T=
ω
=π,
∴ω=2,又函數(shù)y=Asin(ωx+?)+k過(
π
6
,4),
∴2×
π
6
+φ=
π
2
,
∴φ=
π
6
;
∴y=f(x)=2sin(2x+
π
6
)+2,
∴f(
12
)=2sin(2×
12
+
π
6
)+2
=-
3
+2.
故答案為:2-
3
點(diǎn)評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求φ是難點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ),在同一周期內(nèi),當(dāng)x=
π
12
時,取最大值y=2,當(dāng)x=
12
時,取得最小值y=-2,那么函數(shù)的解析式為( 。
A、y=
1
2
sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=Asin(ωx+∅)(A>0,ω>0,-π≤∅≤π)一個周期的圖象(如圖),則這個函數(shù)的一個解析式為( 。
A、y=2sin(
3
2
x+
π
2
)
B、y=2sin(3x+
π
6
)
C、y=2sin(3x-
π
6
)
D、y=2sin(3x-
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+?)+B(A>0,ω>0,|?|<
π
2
)
的周期為T,在一個周期內(nèi)的圖象如圖所示,則φ=
-
π
6
-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一部分圖象如圖所示,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+∅)+k的最大值為4,最小值為0,最小正周期是
π
2
,在x∈[
π
24
,
π
12
]
上單調(diào)遞增,則下列符合條件的解析式是( 。

查看答案和解析>>

同步練習(xí)冊答案