【題目】對于函數(shù)yfx),若在其定義域內(nèi)存在x0,使得x0fx0)=1成立,則稱函數(shù)fx)具有性質(zhì)M

1)下列函數(shù)中具有性質(zhì)M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0,+∞))

fx

2)若函數(shù)fx)=a|x2|1)(x[1,+∞))具有性質(zhì)M,則實數(shù)a的取值范圍是____

【答案】①②④ aa0

【解析】

1)①因為fx)=﹣x+2,若存在,則,解一元二次方程即可.②若存在,則,即,再利用零點存在定理判斷.③若存在,則,直接解方程.④若存在,則,即,令,再利用零點存在定理判斷.

2)若函數(shù)fx)=a|x2|1)(x[1+∞))具有性質(zhì)M,則ax|x2|1=1x[1,+∞)有解,將問題轉(zhuǎn)化 :當 時, 有解,當 時, 有解,分別用二次函數(shù)的性質(zhì)求解.

1)①因為fx)=﹣x+2,若存在,則,

,所以 ,存在.

②因為fx)=sinxx[0,2π]),若存在,則

,

,

因為,

所以存在 .

③因為fx)=x,(x∈(0+∞)),若存在,則,

,所以不存在.

④因為fx,(x∈(0,+∞)),若存在,則,

,

因為

所以存在.

2)若函數(shù)fx)=a|x2|1)(x[1,+∞))具有性質(zhì)M

ax|x2|1=1,x[1,+∞)有解,

時, 有解,

,

所以 .

時, 有解,

所以 .

綜上:實數(shù)a的取值范圍是aa0.

故答案為:(1). ①②④ (2). aa0

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:在平面四邊形ABCD中,,,(如圖1),若將沿對角線BD折疊,使(如圖2.請在圖2中解答下列問題.

1)證明:;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù)),圓的極坐標方程為.

(1)寫出直線的方程和圓的直角坐標方程;

(2)若點為圓上一動點,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的有(

A.設(shè)正六棱錐的底面邊長為1,側(cè)棱長為,那么它的體積為

B.用斜二測法作△ABC的水平放置直觀圖得到邊長為a的正三角形,則△ABC面積為

C.三個平面可以將空間分成4,6,7或者8個部分

D.已知四點不共面,則其中任意三點不共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線,的直角坐標方程;

(2)判斷曲線是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜率為的直線與橢圓交于,兩點,線段的中點為

(1)證明:;

(2)設(shè)的右焦點,上一點,.證明:,,成等差數(shù)列,并求該數(shù)列的公差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足.

(1)若,證明:

(i)當時,有;

(ii)當時,有.

(2)若,證明:當時,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將各位數(shù)碼不大于3的全體正整數(shù)m按自小到大的順序排成一個數(shù)列,則__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形中,邊所在的直線方程分別為,的中點為.

1)求的坐標;

2)求角的內(nèi)角平分線所在直線的方程.

查看答案和解析>>

同步練習冊答案