【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對(duì)角線BD折疊,使(如圖2.請(qǐng)?jiān)趫D2中解答下列問(wèn)題.

1)證明:;

2)求三棱錐的高.

【答案】1)證明見(jiàn)解析;(2

【解析】

(1)在圖1中,根據(jù)平面幾何知識(shí)可得BC=1且∠CBD90°,在圖2中可以得到AC2=AB2+CB2,從而可證明BC⊥平面ABD從而可證明結(jié)論.

(2)由(1)有,用等體積法有.

證明:法1:由左圖知,

BDC中,∠CBD135°-45°=90°,

BDC75°-45°=30°,

,所以BC=1,

又在右圖中,因?yàn)?/span>AC,ABAD,所以AC2=AB2+CB2

所以BCAB

又因?yàn)椤?/span>CBD90°,所以BC⊥平面ABD

所以BCAD

2:如右圖,設(shè)BD的中點(diǎn)為O,連結(jié)A0CO,因?yàn)椤?/span>A90°ABAD

由左圖知,在BDC中,∠CBD135°-45°=90°

BDC75°-45°=30°,所以BC=1,所以

又因?yàn)?/span>AC,所以AC2=AO2+CO2

所以AOCO,所以AO⊥平面BCD,所以平面ABD⊥平面BCD,又∠CBD=90°

所以BC⊥平面ABD, 所以BCAD

2)因?yàn)?/span>ABAD,ACCD2=BC2+BD2=4

所以CD2=AC2+AD2,所以ACAD

設(shè)三棱錐BADC的高為h,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若是橢圓上不重合的四點(diǎn),相交于點(diǎn),,且,求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),求函數(shù)在區(qū)間上的最小值;

3)某同學(xué)發(fā)現(xiàn):總存在正實(shí)數(shù),,使,試問(wèn):該同學(xué)的判斷是否正確?若不正確,請(qǐng)說(shuō)明理由;若正確,請(qǐng)直接寫(xiě)出的取值范圍(不需要解答過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人的月工資由基礎(chǔ)工資和績(jī)效工資組成2010年每月的基礎(chǔ)工資為2100元、績(jī)效工資為2000元從2011年起每月基礎(chǔ)工資比上一年增加210元、績(jī)效工資為上一年的照此推算,此人2019年的年薪為______萬(wàn)元(結(jié)果精確到)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,當(dāng)時(shí),產(chǎn)品為一級(jí)品;當(dāng)時(shí),產(chǎn)品為二級(jí)品,當(dāng)時(shí),產(chǎn)品為三級(jí)品,現(xiàn)用兩種新配方(分別稱(chēng)為配方和配方)做實(shí)驗(yàn),各生產(chǎn)了件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗(yàn)結(jié)果 :(以下均視頻率為概率)

配方的頻數(shù)分配表:

指標(biāo)值分組

頻數(shù)

配方的頻數(shù)分配表:

指標(biāo)值分組

頻數(shù)

(1)若從配方產(chǎn)品中有放回地隨機(jī)抽取件,記“抽出的配方產(chǎn)品中至少件二級(jí)品”為事件,求事件發(fā)生的概率;

(2)若兩種新產(chǎn)品的利潤(rùn)率與質(zhì)量指標(biāo)滿足如下關(guān)系:,其中,從長(zhǎng)期來(lái)看,投資哪種配方的產(chǎn)品平均利潤(rùn)率較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5名男生和4名女生中選出4人參加辯論比賽.

1)如果男生中的甲與女生中的乙至少要有1人在內(nèi),那么有多少種不同選法?

2)如果4個(gè)人中既有男生又有女生,那么有多少種不同選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高衡水市的整體旅游服務(wù)質(zhì)量,市旅游局舉辦了旅游知識(shí)競(jìng)賽,參賽單位為本市內(nèi)各旅游協(xié)會(huì),參賽選手為持證導(dǎo)游.現(xiàn)有來(lái)自甲旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游2名;乙旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游1名.從這6名導(dǎo)游中隨機(jī)選擇2人參加比賽.

(1)求選出的2名都是高級(jí)導(dǎo)游的概率;

(2)為了進(jìn)一步了解各旅游協(xié)會(huì)每年對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)情況,經(jīng)多次統(tǒng)計(jì)得到,甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),求甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)不低于乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,且,平面平面,,O的中點(diǎn).

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)yfx),若在其定義域內(nèi)存在x0,使得x0fx0)=1成立,則稱(chēng)函數(shù)fx)具有性質(zhì)M

1)下列函數(shù)中具有性質(zhì)M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0,+∞))

fx

2)若函數(shù)fx)=a|x2|1)(x[1,+∞))具有性質(zhì)M,則實(shí)數(shù)a的取值范圍是____

查看答案和解析>>

同步練習(xí)冊(cè)答案