【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )= .
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(﹣1,1)上是增函數(shù).
【答案】解:(Ⅰ)由題知,f(x)是(﹣1,1)上的奇函數(shù),
所以f(0)=0,即b=0
又因?yàn)閒( )= .
所以a=1,
∴f(x)= ;
(Ⅱ)證明:x1 , x2∈(﹣1,1)且x1<x2 ,
則有f(x1)﹣f(x2)= ,
∵x1<x2 , x1 , x2∈(﹣1,1),
∴f(x1)﹣f(x2)= <0,
∴f(x1)<f(x2),
∴函數(shù)在(﹣1,1)上是增函數(shù)
【解析】(Ⅰ)根據(jù)奇函數(shù)的性質(zhì)可知f(0)=0,求出b,a值;
(Ⅱ)利用定義的方法判斷函數(shù)單調(diào)性,設(shè)x1 , x2∈(﹣1,1)且x1<x2 , 判斷f(x1)﹣f(x2)的正負(fù)即可.
【考點(diǎn)精析】利用函數(shù)單調(diào)性的判斷方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論:
①若命題 ,則p:x∈R,x2+x+1≥0;
②“(x﹣3)(x﹣4)=0”是“x﹣3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x﹣m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x﹣m=0沒(méi)有實(shí)數(shù)根,則m≤0”;
④若a>0,b>0,a+b=4,則 的最小值為1.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P是曲線 上的任意一點(diǎn),點(diǎn)P處的切線的傾斜角為α,則α的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市.
(1)若該人到達(dá)后停留天(到達(dá)當(dāng)日算1天),求此人停留期間空氣質(zhì)量都是重度污染的概率;
(2)若該人到達(dá)后停留3天(到達(dá)當(dāng)日算1天〉,設(shè)是此人停留期間空氣重度污染的天數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的左焦點(diǎn)與拋物線的焦點(diǎn)重合,直線與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(Ⅰ)求該橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線交橢圓于, 兩點(diǎn),線段的中點(diǎn)為, 的垂直平分線與軸和軸分別交于, 兩點(diǎn).記的面積為, 的面積為.問(wèn):是否存在直線,使得,若存在,求直線的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋子內(nèi)裝有2個(gè)綠球,3個(gè)黃球和若干個(gè)紅球(所有球除顏色外其他均相同),從中一次性任取2個(gè)球,每取得1個(gè)綠球得5分,每取得1個(gè)黃球得2分,每取得1個(gè)紅球得1分,用隨機(jī)變量表示2個(gè)球的總得分,已知得2分的概率為.
(Ⅰ)求袋子內(nèi)紅球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量, ,且函數(shù).
(Ⅰ)當(dāng)函數(shù)在上的最大值為3時(shí),求的值;
(Ⅱ)在(Ⅰ)的條件下,若對(duì)任意的,函數(shù), 的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)在上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在區(qū)間[0,a]上的函數(shù)f(x)的圖象如圖所示,記以A(0,f(0)),B(a,f(a)),C(x,f(x))為頂點(diǎn)的三角形的面積為S(x),則函數(shù)S(x)的導(dǎo)函數(shù)S′(x)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com