【題目】已知橢圓: ()的左焦點與拋物線的焦點重合,直線與以原點為圓心,以橢圓的離心率為半徑的圓相切.
(Ⅰ)求該橢圓的方程;
(Ⅱ)過點的直線交橢圓于, 兩點,線段的中點為, 的垂直平分線與軸和軸分別交于, 兩點.記的面積為, 的面積為.問:是否存在直線,使得,若存在,求直線的方程,若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)由已知得, ,由此得橢圓方程;
(Ⅱ)假設(shè)存在直線AB,使得S1=S2,由題意直線AB不能與x,y軸垂直,設(shè)直線AB的方程為()代入整理得,由此利用韋達(dá)定理、直線垂直、三角形相似等知識,結(jié)合已知條件能求出結(jié)果.
試題解析:
(Ⅰ)由題意,得, ,即,∴,
∴所求橢圓的方程為.
(Ⅱ)假設(shè)存在直線使,顯然直線不能與, 軸垂直.
∴直線的斜率存在,設(shè)其方程為(),
將其代入整理得,
設(shè), , , ,
∴,
∵,∴,
解得,即,
∵,∴,∴,
即,又∵,∴,
∴,
整理得因為此方程無解,故不存在直線滿足.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)= ,若x∈[﹣4,﹣2)時,f(x)≥ 恒成立,則實數(shù)t的取值范圍是( )
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且與均為正三角形, 為的重心.
(1)求證: 平面;
(2)求平面與平面所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )= .
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(﹣1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一 、高二 、高三三個年級共有 名教師,為調(diào)查他們的備課時間情況,通過分層
抽樣獲得了名教師一周的備課時間 ,數(shù)據(jù)如下表(單位 :小時):
高一年級 | ||||||||
高二年級 | ||||||||
高三年級 |
(1)試估計該校高三年級的教師人數(shù) ;
(2)從高一年級和高二年級抽出的教師中,各隨機選取一人,高一年級選出的人記為甲 ,高二年級選出的人記為乙 ,求該周甲的備課時間不比乙的備課時間長的概率 ;
(3)再從高一、高二、高三三個年級中各隨機抽取一名教師,他們該周的備課時間分別是(單位: 小時),這三個數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷與的大小. (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,且取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= .
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)設(shè)曲線C與直線l交于A,B兩點,若P(1,2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下頂點分別為,且點. 分別為橢圓的左、右焦點,且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點是橢圓上異于, 的任意一點,過點作軸于, 為線段
的中點.直線與直線交于點, 為線段的中點, 為坐標(biāo)原點.求
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC=,E,F分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, .若CM∥平面AEF,求實數(shù)λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com