【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,

(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時,求AD的長.

【答案】
(1)證明:連接DE,

∵ACED是圓的內(nèi)接四邊形,

∴∠BDE=∠BCA,

∵∠DBE=∠CBA,

∴△BDE∽△BCA,

,

∵AB=2AC,

∴BE=2DE.

∵CD是∠ACB的平分線,

∴AD=DE,

從而BE=2AD


(2)解:由條件得AB=2AC=2,

設AD=t,根據(jù)割線定理得

BDBA=BEBC,

∴(AB﹣AD)BA=2ADBC,

∴(2﹣t)×2=2t2,

解得t= ,即AD=


【解析】(1)連接DE,因為ACED是圓的內(nèi)接四邊形,所以△BDE∽△BCA,由此能夠證明BE=2AD.(2)由條件得AB=2AC=2,根據(jù)割線定理得BDBA=BEBC,即(AB﹣AD)BA=2AD(2AD+CE),由此能求出AD.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是等腰三角形,且.四邊形是直角梯形,,,,,.

(Ⅰ)求證:平面;

(Ⅱ)當平面 平面時,求四棱錐的體積;

(Ⅲ)請在圖中所給的五個點中找出兩個點,使得這兩點所在的直線與直線垂直,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點, 且交橢圓兩點,射線于橢圓交于點,設的面積與的面積分別為.

①求的最大值; ②當取得最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的三邊長滿足,則的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

(1)當時,求函數(shù)的值域

(2)當時,設,若給定,對于兩個大于1的正數(shù),存在滿足:,使恒成立,求實數(shù)的取值范圍.

(3)當時,設,若的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:m∈R,使得函數(shù)f(x)=x2+(m﹣1)x2﹣2是奇函數(shù),命題q:向量 =(x1 , y1), =(x2 , y2),則“ = ”是:“ ”的充要條件,則下列命題為真命題的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過拋物線E:y2=2px(p>0)的焦點F且與x垂直,l與E所圍成的封閉圖形的面積為24,若點P為拋物線E上任意一點,A(4,1),則|PA|+|PF|的最小值為( )
A.6
B.4+2
C.7
D.4+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行圖題實數(shù)的程序框圖,如果輸入a=2,b=2,那么輸出的a值為( )

A.44
B.16
C.256
D.log316

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

同步練習冊答案