設(shè)橢圓 的離心率為,點(diǎn),0),(0,)原點(diǎn)到直線的距離為。

(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

(1)橢圓方程為: ,(2)直線方程為

解析試題分析:(1)由離心率為可得出的關(guān)系,再由點(diǎn),知直線的方程,利用點(diǎn)到直線的距離公式可得的值求出橢圓的標(biāo)準(zhǔn)方程。
(2)由(1)知,又因?yàn)橹本經(jīng)過點(diǎn),所以可表示出直線方程,進(jìn)而求出,得出的方程又聯(lián)立求解得直線方程。
試題解析:(1)由

由點(diǎn),知直線的方程為
所以
所以             4分
所以橢圓方程為:               5分
(2) 由(1)知,因?yàn)橹本經(jīng)過點(diǎn),所以
得, ,即直線的方程為.        7分
,即               9分
 得              12分
所以,因此直線方程為          14分
考點(diǎn):橢圓的定義,直線與橢圓的關(guān)系,向量垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問M,F,Q是否共線,若共線請(qǐng)證明;反之說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知坐標(biāo)平面內(nèi).動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的離心率為,在橢圓C上,A,B為橢圓C的左、右頂點(diǎn).
(1)求橢圓C的方程:
(2)若P是橢圓上異于A,B的動(dòng)點(diǎn),連結(jié)AP,PB并延長,分別與右準(zhǔn)線相交于M1,M2.問是否存在x軸上定點(diǎn)D,使得以M1M2為直徑的圓恒過點(diǎn)D?若存在,求點(diǎn)D的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

查看答案和解析>>

同步練習(xí)冊(cè)答案