已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

(1)證明見試題解析;(2).

解析試題分析:(1)要證明,可設(shè)出兩點(diǎn)的坐標(biāo)分別為,則,而,從哪里來呢?考慮到兩點(diǎn)在拋物線上,因此,下面的目標(biāo)是求,我們把直線方程與拋物線方程聯(lián)立,消去,得到關(guān)于的二次方程,正是這個(gè)二次方程的解,利用韋達(dá)定理,可得,從而證得結(jié)論;(2)如果直接利用,則,會(huì)發(fā)現(xiàn)很難把這個(gè)根式用表示出來,我們換一種思路,直線軸于點(diǎn),因此分成兩個(gè)三角形,從而有,這里,正好能利用(1)結(jié)論中的結(jié)論.
試題解析:(1)由方程組得:
設(shè),由韋達(dá)定理得:,

,即.4分

(2)設(shè)直線與交于點(diǎn),則,

,
.10分
考點(diǎn):(1)直線與拋物線相交,垂直問題;(2)面積問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓 的離心率為,點(diǎn),0),(0,)原點(diǎn)到直線的距離為。

(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,過點(diǎn)P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn),過點(diǎn)F2作直線與橢圓C交于A,B兩點(diǎn),且,若的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案