已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若函數(shù)在區(qū)間上的最大值為28,求的取值范圍.
(Ⅰ)當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時,在單調(diào)遞增;當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;(Ⅱ)即的取值范圍是.
解析試題分析:(Ⅰ)討論函數(shù)的單調(diào)區(qū)間,它的解題方法有兩種:一是利用定義,二是導(dǎo)數(shù)法,本題由于是三次函數(shù),可用導(dǎo)數(shù)法求單調(diào)區(qū)間,只需求出的導(dǎo)函數(shù),判斷的導(dǎo)函數(shù)的符號,從而求出的單調(diào)區(qū)間;但本題求導(dǎo)后令,得,由于不知的大小,因此需要對進(jìn)行分類討論,從而確定在各種情況下的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,若函數(shù)在區(qū)間上的最大值為28,求的取值范圍,這是函數(shù)在閉區(qū)間上的最值問題,像這一類問題的處理方法為,先求出的極值點(diǎn),然后分別求出極值點(diǎn)與區(qū)間端點(diǎn)處的函數(shù)值,比較誰大誰為最大值,比較誰小誰為最小值,但本題是給出最大值,確定區(qū)間端點(diǎn)的取值范圍,只需找出包含最大值28的的取值范圍,,故故區(qū)間內(nèi)必須含有,即的取值范圍是.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知中心在原點(diǎn)的雙曲線的一個焦點(diǎn)是,一條漸近線的方程是.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個零點(diǎn),AB=π.
科目:高中數(shù)學(xué)
來源:
題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式其中為常數(shù).己知銷售價格為5元/千克時,每日可售出該商品11千克.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),。
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),,.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
試題解析:(Ⅰ),令得,
(ⅰ)當(dāng),即時,,在單調(diào)遞增,
(ⅱ)當(dāng),即時,當(dāng),或時,,在、內(nèi)單調(diào)遞增,當(dāng)時,在內(nèi)單調(diào)遞減,
(ⅲ)當(dāng),即時,當(dāng)時,在內(nèi)單調(diào)遞增
當(dāng)時,在內(nèi)單調(diào)遞減 ,
綜上,當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時,在單調(diào)遞增;當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;
(Ⅱ)當(dāng)時,,,令得,將,,變化情況列表如下:
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)求雙曲線的方程;(2)若以為斜率的直線與雙曲線相交于兩個不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍.
(1)若時,單調(diào)遞增,求的取值范圍;
(2)討論方程的實(shí)數(shù)根的個數(shù).
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得利潤最大.
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng),且,求函數(shù)的單調(diào)區(qū)間.
(1)若函數(shù)在處取得極值,且函數(shù)只有一個零點(diǎn),求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
(1)求證:函數(shù)在上單調(diào)遞增;
(2)若函數(shù)有四個零點(diǎn),求的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號