【題目】近年來(lái),石家莊經(jīng)濟(jì)快速發(fā)展,躋身新三線城市行列,備受全國(guó)矚目.無(wú)論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國(guó)的米字形高鐵路網(wǎng),石家莊的交通優(yōu)勢(shì)在同級(jí)別的城市內(nèi)無(wú)能出其右.為了調(diào)查石家莊市民對(duì)出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

1)求的值;

2)求被調(diào)查的市民的滿意程度的平均數(shù),中位數(shù)(保留小數(shù)點(diǎn)后兩位),眾數(shù);

3)若按照分層抽樣從,中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.

【答案】1,;(2)平均數(shù)約為,中位數(shù)約為,眾數(shù)約為75;(3

【解析】

1)根據(jù)題目頻率分布直方圖頻率之和為1,已知其中,可得答案;

2)利用矩形的面積等于頻率為0.5可估算中位數(shù)所在的區(qū)間,利用估算中位數(shù)定義,矩形最高組估算縱數(shù)可得答案;

3)利用古典概型的概率計(jì)算公式求解即可.

解:研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如圖的頻率分布直方圖,其中

1,其中,解得:

2)隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,則估計(jì)被調(diào)查的市民的滿意程度的

平均數(shù):

由題中位數(shù)在7080區(qū)間組,,

中位數(shù):,

眾數(shù):75,

故平均數(shù)約為,中位數(shù)約為,眾數(shù)約為75;

3)若按照分層抽樣從,,中隨機(jī)抽取8人,

80人抽2人,

,240人抽6人,

再?gòu)倪@8人中隨機(jī)抽取2人,則共有種不同的結(jié)果,

其中至少有1人的分?jǐn)?shù)在種不同的結(jié)果,

所以至少有1人的分?jǐn)?shù)在的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)下,租車已經(jīng)成為新一代的流行詞,租車自駕游也慢慢流行起來(lái),某小車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是,不超過(guò)2天按照300元計(jì)算;超過(guò)兩天的部分每天收費(fèi)標(biāo)準(zhǔn)為100元(不足1天的部分按1天計(jì)算).有甲乙兩人相互獨(dú)立來(lái)該租車點(diǎn)租車自駕游(各租一車一次),設(shè)甲、乙不超過(guò)2天還車的概率分別為;2天以上且不超過(guò)3天還車的概率分別;兩人租車時(shí)間都不會(huì)超過(guò)4天.

(1)求甲所付租車費(fèi)用大于乙所付租車費(fèi)用的概率;

(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是甲、乙兩位同學(xué)高三上學(xué)期的5次聯(lián)考數(shù)學(xué)成績(jī),現(xiàn)在只知其從第1次到第5次分?jǐn)?shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是(

A.甲同學(xué)的成績(jī)的平均數(shù)大于乙同學(xué)的成績(jī)的平均數(shù)

B.甲同學(xué)的成績(jī)的方差大于乙同學(xué)的成績(jī)的方差

C.甲同學(xué)的成績(jī)的極差小于乙同學(xué)的成績(jī)的極差

D.甲同學(xué)的成績(jī)的中位數(shù)小于乙同學(xué)的成績(jī)的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新高考改革后,假設(shè)某命題省份只統(tǒng)一考試數(shù)學(xué)和語(yǔ)文,英語(yǔ)學(xué)科改為參加等級(jí)考試,每年考兩次,分別放在每個(gè)學(xué)年的上下學(xué)期,其余六科政治,歷史,地理,物理,化學(xué),生物則以該省的省會(huì)考成績(jī)?yōu)闇?zhǔn).考生從中選擇三科成績(jī),參加大學(xué)相關(guān)院校的錄取.

1)若英語(yǔ)等級(jí)考試有一次為優(yōu),即可達(dá)到某“雙一流”院校的錄取要求.假設(shè)某考生參加每次英語(yǔ)等級(jí)考試事件是相互獨(dú)立的,且該生英語(yǔ)等級(jí)考試成績(jī)?yōu)閮?yōu)的概率為,求該考生直到高二下期英語(yǔ)等級(jí)考試才為優(yōu)的概率;

2)據(jù)預(yù)測(cè),要想報(bào)考某“雙一流”院校,省會(huì)考的六科成績(jī)都在95分以上,才有可能被該校錄取.假設(shè)某考生在省會(huì)考六科的成績(jī),考到95分以上的概率都是,設(shè)該考生在省會(huì)考時(shí)考到95以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)?萍脊(jié)需要同學(xué)設(shè)計(jì)一幅矩形紙板宣傳畫,要求畫面的面積為(如圖中的陰影部分),畫面的上、下各留空白,左、右各留空白.

1)如何設(shè)計(jì)畫面的高與寬的尺寸,才能使整個(gè)宣傳畫所用紙張面積最小?

2)如果按照第一問(wèn)這樣制作整個(gè)宣傳畫,在科技節(jié)結(jié)束以后,這整個(gè)宣傳畫紙板可再次作為某實(shí)驗(yàn)道具,并要求從整個(gè)宣傳畫板的四個(gè)角各截取一個(gè)相同的小正方形,做成一個(gè)長(zhǎng)方體形的無(wú)蓋容器.問(wèn)截下的小正方形的邊長(zhǎng)(也就是該容器的高)是多少時(shí),該容器的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種汽車的購(gòu)車費(fèi)用是10萬(wàn)元,每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)約為萬(wàn)元,年維修費(fèi)用第一年是萬(wàn)元,第二年是萬(wàn)元,第三年是萬(wàn)元,,以后逐年遞增萬(wàn)元汽車的購(gòu)車費(fèi)用、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)、維修費(fèi)用的和平均攤到每一年的費(fèi)用叫做年平均費(fèi)用.設(shè)這種汽車使用年的維修費(fèi)用的和為,年平均費(fèi)用為.

(1)求出函數(shù),的解析式;

(2)這種汽車使用多少年時(shí),它的年平均費(fèi)用最。孔钚≈凳嵌嗌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年我國(guó)將加快階梯水價(jià)推行,原則是;尽⒔C(jī)制、促節(jié)約,其中;是指保證至少80%的居民用戶用水價(jià)格不變.為響應(yīng)國(guó)家政策,制定合理的階梯用水價(jià)格,某城市采用簡(jiǎn)單隨機(jī)抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進(jìn)行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):

(1)在郊區(qū)的這5戶居民中隨機(jī)抽取2戶,求其年人均用水量都不超過(guò)30噸的概率;

(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過(guò)30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價(jià)格保持不變.試根據(jù)樣本估計(jì)總體的思想,分析此方案是否符合國(guó)家;政策.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案