【題目】如圖,在多面體中,四邊形為直角梯形, , , ,四邊形為矩形.

(1)求證:平面平面;

(2)線段上是否存在點(diǎn),使得二面角的大小為?若存在,確定點(diǎn)的位置并加以證明.

【答案】1)見解析(2點(diǎn)為線段的中點(diǎn)

【解析】試題分析:(1)先根據(jù)勾股定理得,再由矩形性質(zhì)得,由線面垂直判定定理得,最后根據(jù)面面垂直判定定理得結(jié)論 (2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解各平面法向量,根據(jù)向量數(shù)量積兩法向量夾角,最后根據(jù)二面角與向量夾角相等或互補(bǔ)關(guān)系求點(diǎn)坐標(biāo),即得點(diǎn)的位置

試題解析:1證明:由平面幾何的知識,易得, ,

,所以在中,滿足,所以為直角三角形,且.

因?yàn)樗倪呅?/span>為矩形,

所以.

, ,

可得 .

所以平面 平面.

2)存在點(diǎn),使得二面角為大小為,點(diǎn)為線段的中點(diǎn).

事實(shí)上,以為原點(diǎn), 軸, 軸,過作平面的垂線為軸,建立空間直角坐標(biāo)系,

,

設(shè),由,

,得.

設(shè)平面的一個法向量為,

,即,

不妨設(shè),取.

平面的一個法向量為.

二面角為大小為

于是.

解得 (舍去).

所以當(dāng)點(diǎn)為線段的中點(diǎn)時,二面角為大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點(diǎn),求線段EC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)軸的正半軸上,過焦點(diǎn)且斜率為的直線與拋物線交于兩點(diǎn),且滿足.

1)求拋物線的方程;

(2)已知為拋物線上一點(diǎn),若點(diǎn)位于軸下方且,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來城市共享單車的投放在我國各地迅猛發(fā)展,共享單車為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對共享單車投放的認(rèn)可度,對年齡段的人群隨機(jī)抽取人進(jìn)行了一次你是否贊成投放共享單車的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組號

分組

贊成投放的人數(shù)

贊成投放的人數(shù)占本組的頻率

第一組

第二組

第三組

第四組

第五組

第六組

)求, , 的值.

)在第四、五、六組贊成投放共享單車的人中,用分層抽樣的方法抽取人參加共享單車騎車體驗(yàn)活動,求第四、五、六組應(yīng)分別抽取的人數(shù).

)在()中抽取的人中隨機(jī)選派人作為領(lǐng)隊,求所選派的人中第五組至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)R(x0 , y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為 ,過Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).

(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為坐標(biāo)原點(diǎn), 為橢圓的離心率.

(1)求橢圓的方程;

(2)是否存在斜率為2的直線使得當(dāng)直線與橢圓有兩個不同交點(diǎn)時,能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機(jī)抽取了n人進(jìn)行問卷調(diào)查,得如下數(shù)據(jù):

組數(shù)

分組

認(rèn)同人數(shù)

認(rèn)同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e),求a的值;
(2)當(dāng)1<x<2時,求證:

查看答案和解析>>

同步練習(xí)冊答案