某四棱錐的三視圖如圖所示(單位:cm),則該四棱錐的體積是(  )
A、27cm3
B、9cm3
C、3
2
cm3
D、3cm3
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體是四棱錐,由側視圖知四棱錐的高為1,根據(jù)三視圖的數(shù)據(jù)判斷底面是邊長為1+2=3的正方形,代入棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體是四棱錐,且四棱錐的高為1,
底面是邊長為1+2=3的正方形,
∴幾何體的體積V=
1
3
×32×1=3(cm3).
故選:D.
點評:本題考查了由三視圖求幾何體的體積,解答此類問題的關鍵是判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義域為[a,b]的函數(shù)y=f(x)圖象上兩點A(a,f(a)),B(b,f(b)).M(x,y)是y=f(x)圖象上任意一點,其中x=λa+(1-λ)b,λ∈[0,1].已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k對任意λ∈[0,1]恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x-
1
x
在[1,3]上“k階線性近似”,則實數(shù)的k取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(2+i)
.
z
=3+4i,則z=( 。
A、1+2iB、1-2i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,x),
b
=(x-1,2),若
a
b
,則x=(  )
A、-1或2B、-2或1
C、1或2D、-1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

球面上有M、N兩點,在過M、N的球的大圓上,
MN
的度數(shù)為90°,在過M、N的球小圓上,
MN
的度數(shù)為120°,又MN=
3
cm,則球心到上述球小圓的距離是( 。
A、
1
2
cm
B、
2
2
cm
C、
3
2
cm
D、1cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
,則它在下列區(qū)間上不是減函數(shù)的是( 。
A、(0,+∞)
B、(-∞,0)
C、(-∞,0)∪(0,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P(x,y),其中x,y∈N,則滿足x+y≤3的點P的個數(shù)為( 。
A、10B、9C、3D、無數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a1
=(1,-7)
,
d
=(1,1)
,對任意n∈N*都有
an+1
=
an
+
d

(1)求|
an
|
的最小值;
(2)求正整數(shù)m,n,使
am
an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(a+i)(2+i)是純虛數(shù)(i是虛數(shù)單位),則實數(shù)a的值為
 

查看答案和解析>>

同步練習冊答案